Grafen till en andragradsekvation
Hej!
Har lite svårt att börja, har försökt granska grafen men har ej kommit längre än så. Skulle uppskatta om någon kunde hjälpa mig så att jag lyckas lösa uppgiften!
Titta vart grafen skär y-axeln. Värdet du får är värdet på konstanten c.
Efteråt kan du försöka sätta in två olika möjliga värden på x och y i andragradsfunktionen så att du får ett ekvationssystem. Dvs. finn två koordinater och sätt in dessa värden så att du får två olika andragradsekvationer (dock samma funktion). Lös sedan ut a och b.
Den skär -6 så c är -6.
Vad menar du med att sätta in två olika möjliga värden på x och y?
Jättebra. c = -6
Finn två koordinater som grafen skär. Sätt sedan in dem i två (samma) funktion som nedan:
När du väl har gjort det får du ett ekvationssystem. Lös då ut a och b.
Menar du att den skär på nollställena eller?
Förresten är konstanten c alltid var y-axeln skär sig?
abcdefghijklmo skrev:Menar du att den skär på nollställena eller?
Förresten är konstanten c alltid var y-axeln skär sig?
Du kan välja nollställena om du vill! Sålänge du har två olika koordinater som du kan sätta in i ett ekvationssystem.
> Förresten är konstanten c alltid var y-axeln skär sig?
Ja precis!
Jag har valt koordinaterna (-1, 0 ) och (3, 0). Valde nollställena men är koordinaterna skrivna på rätt sätt?
abcdefghijklmo skrev:Jag har valt koordinaterna (-1, 0 ) och (3, 0). Valde nollställena men är koordinaterna skrivna på rätt sätt?
Jajjemän.
Gjorde så här, ser det korrekt ut?
Vad är nästa steg?
Nästan rätt. Kom ihåg att du endast har en x² term, inte två. Det är x multiplicerat med b.
y = ax² + bx + c
Nästa steg är att lösa ut a och b genom ekvationssystem. Vet du hur det går till?
Ja, men jag gjorde ju två olika ekvationssystem inte en, jag skrev ju båda i den allmänna formen är det fel eller?
Kan man inte lösa ut a och b genom att använda substitutionsmetoden eller additionsmetoden?
Hur får du ekv.1 negativ, för jag fick ju den positiv ovan?
Förstår inte hur du kan få helt andra ekvationer i jämförelse med de ekvationerna som jag skrev?
abcdefghijklmo skrev:Hur får du ekv.1 negativ, för jag fick ju den positiv ovan?
Förstår inte hur du kan få helt andra ekvationer i jämförelse med de ekvationerna som jag skrev?
Du skrev fel allmän formel:
Endast den första termen har x av andra grad. Inte den andra. Det ska stå bx, inte bx². Annars blir det en annan funktion.
Den allmänna formeln är f(x) = ax² + bx + c.
Sätter du in x = -1 och y = 0 får du 0 = a - b + c
Sätter du in x = 3 och y = 0 får du 0 = 9a + 3b + c
Vad gjorde du sen efter detta steget?
När vi väl har två ekvationer löser vi ut antingen a eller b. I detta fall löste jag ut a = 6 + b. Denna satte jag in i ekv 2.
Se mitt föregående inlägg där jag beskriver lösningen.
https://www.desmos.com/calculator/8qfj1tsbuo
Tillägg: 2 apr 2022 09:38
Följ Akvarells förslag ovan, så kan du efter det lära dig y=k(x-x1)(x-x2)...
Okej, så vi har en ekvation för a och kan sätta in den ekv. 2 för att därmed kunna lösa ut b och därmed räkna ut värdet av a i sig. Är det så du menar?
abcdefghijklmo skrev:Okej, så vi har en ekvation för a och kan sätta in den ekv. 2 för att därmed kunna lösa ut b och därmed räkna ut värdet av a i sig. Är det så du menar?
Precis!
Nu har vi kunnat bestämma alla konstanter, då a är 2, b är -4 och c är -6. Vad menar de i c frågan?
abcdefghijklmo skrev:Nu har vi kunnat bestämma alla konstanter, då a är 2, b är -4 och c är -6. Vad menar de i c frågan?
Finns det en koordinat (10, 152) som grafen passerar/skär? Exempelvis skär grafen just nu koordinaten (2, -6). Men när den väl går långt uppåt, kommer den passera punkten (10, 152)?
Men hur kan jag ta reda på det, exempelvis 152 är ett jättestort tal som inte går att avläsa från grafen, det måste väl finnas ett smidigare sätt?
Jamen precis.. det blir ju ruskigt jobbigt om man bara kan använda grafen. Men nu har vi formulerat en andragradsfunktion som beskriver just denna graf. Kan vi använda oss utav den? :)
För just denna graf gäller den allmänna formeln dvs.
ax2 + bx + c = 0, ellerhur?
abcdefghijklmo skrev:För just denna graf gäller den allmänna formeln dvs.
ax2 + bx + c = 0, ellerhur?
Jo, men den har specifika värden på konstanterna a, b och c, vilka vi nu har räknat ut. Använd dig av andragradsfunktionen som vi har formulerat för denna specifika graf: f(x) = 2x² - 4x - 6
Hänger du med?
Japp, du har satt in konstanterna i andragradsekvationen. Vad bör göras sen?
abcdefghijklmo skrev:Japp, du har satt in konstanterna i andragradsekvationen. Vad bör göras sen?
OK. Vi har en koordinat (10, 152) som sökes. Vad tycker du?
Jag tycker att vi borde sätta in x värdet i andragradsekvationen vilket är 10 och hela andragradsekvationen ska vara lika med 152 så då kan man göra en ekvation av andragradsekvationen.
abcdefghijklmo skrev:Jag tycker att vi borde sätta in x värdet i andragradsekvationen vilket är 10 och hela andragradsekvationen ska vara lika med 152 så då kan man göra en ekvation av andragradsekvationen.
Jättebra! Kör med enbart x-värdet, så kan du se om det verkligen är lika med 152!
Detta betyder att punkten (10, 152) ej ligger på grafen eftersom vi får samma x-värde vilket är 10 men olika y-värden. Om punkten skulle ligga på grafen skulle vi få 152 och inte 154 vilket vi har fått i detta fall. Därför är svaret nej, punkten (10, 152) ligger ej på grafen.
Bra! Forsätt nu med d) och e).
Hur vill de att man ska lösa olikheten på d, vad har x för värde, vad är det de frågar efter?
Är detta rätt hittills?
abcdefghijklmo skrev:Är detta rätt hittills?
Titta en extra gång på det jag markerat i fettext ovan.
Sådär, väl?
Men vad hände med x tecknet?
Förstår du?
Nu förstår jag.
Visst, kan man bara subtrahera 4x - 4x för att bara få bort x:et?
Ja det kan man. Nu vill du fortsätta lösa andragradsekvationen.
Kan man faktorisera ekvationen för att därmed använda nollproduktsmetoden med tanke på att vi inte har så många tal och därför kan det inte vara så nödvändigt att använda pq?
Du behöver inte faktorisera ekvationen för du har endast en x-term. Dividera VL med 2 och flytta -4 till HL. Ta roten ur båda leden.
Jag funderade ganska länge på e. Försökte först gå in på stat för att därmed stoppa in alla x och y värden men sen kom jag på att det inte är någon andragradsekvation som man vill ta reda på. Därefter försökte jag testa att gå in på graph och stoppa in två olika ekvationer, men det fungerade inte heller eftersom det inte finns några ekvationer som man behöver veta där de skär sig. Därför undrar jag hur man på ett effektivt sätt kan lösa e?
Du vet att f(x) = 2x² - 4x - 6
Vi kan skriva x + 1 som en funktion g(x) = x +1
Sedan kan vi jämföra båda graferna genom f(x) < g(x).
Vad för information får vi från bilden ovan?
Vi får infon om att båda g och f (ekvationerna) går genom punkten -1. Dessutom får vi veta att f även går genom punkten 3.
Det får vi. Men om vi ska lösa olikheten så vill vi undersöka det blåa intervallet ovan för att få en definitionsmängd (och därmed lösningen för olikheten). När är g(x) = x + 1 > f(x) i bilden?
Vad menas med g(x) = x + 1 f(x)?
g(x) = x + 1
f(x) = 2x² - 4x² - 6
När är g(x) större än f(x) i koordinatsystemet ovan? Finns det något intervall som vi kan teckna?
Den blir ju högre från och med punkt (4,0) och så ökar den därifrån till (6,0)
I dessa koordinater är dock f(x) större än g(x).
Undersöker vi grafen så är g(x) > f(x) mellan (-1,0) och (3,5;0)
Detta kan vi formulera i ett intervall:
Kan du förklara hur man ska tänka eftersom jag gjorde ju ett försök men fick inte fram svaret, vet att man ska avläsa från grafen men vad egentligen ska man titta på?
Titta vart den röda grafen befinner sig ovanför den gröna. Det gör den från -1 < x < 3,5.
Efter 3,5 har den gröna grafen ett större värde, och den röda grafen befinner sig under den.