Geometrisk summa
Hej,
Har fastnatt på en uppgift i matten om geometrisk summa.
För att en viss medicin ska få avsedd effekt behöver en patient ha 15 mg av medicinen i kroppen.
Om man ger hela denna medicinmängd på en gång finns risk för allvarliga biverkningar. Patienten får därför små doser medicin med en timmes mellanrum. Efter 10 sådana lika stora doser upphör medicineringen och patienten ska då ha 15 mg av medicinen i kroppen.
Hur stora skall dessa doser vara, om man vet att medicinen börjar verka omedelbart och att 16 % av den bryts ner i kroppen per timme?
Jag vet att formlen för geometrsik summa är s,n=a(k^(n )-1)÷(k-1)
Jag vet att jag ska skriva a(0.84^(10)-1)÷(0.84-1)
Sen vet jag inte hur jag ska fortsätta. Nån som kan hjälpa mig lite kanske ?
Summan av den geometriska serien är ju den mängd medicin som är kvar i kroppen efter 10 timmar. Sätt detta uttryck lika med 15 och lös ut a.
Du är framme vid målsnöret, men verkar ha glömt vad man ville uppnå med de tio doserna?
Så här ser jag processen:
Låt dosen varje timme vara a mg (jag förmodar att det är vad du menar?)
0 a*(1-0,16)^9 kvar i kroppen av den första dosen när den tionde ges
1 a*(1-0,16)^8 kvar i kroppen av den andra dosen när den tionde ges
2 a*(1-0,16)^7 etc
....
8 a*(1-0,16)^1
9 a*(1-0,16)^0
Det ger denna ekvation om det ska finnas 15 mg i kroppen efter 10 doser:
a·[1 + 0,84 + 0,84^2 + ... +0,84^9] = 15
Stämmer det?
EDIT: Det tog en stund att formulera detta, så jag hann inte se Lars inlägg.
Arktos skrev:Du är framme vid målsnöret, men verkar ha glömt vad man ville uppnå med de tio doserna?
Så här ser jag processen:Låt dosen varje timme vara a mg (jag förmodar att det är vad du menar?)
0 a*(1-0,16)^9 kvar i kroppen av den första dosen när den tionde ges
1 a*(1-0,16)^8 kvar i kroppen av den andra dosen när den tionde ges
2 a*(1-0,16)^7 etc
....
8 a*(1-0,16)^1
9 a*(1-0,16)^0Det ger denna ekvation om det ska finnas 15 mg i kroppen efter 10 doser:
a·[1 + 0,84 + 0,84^2 + ... +0,84^9] = 15
Stämmer det?
Japp det stämmer. Ska jag nu räkna ut a ?
Javisst
Lös ekvationen.
Bestäm a om det var det som man frågade efter ...
Lars skrev:Summan av den geometriska serien är ju den mängd medicin som är kvar i kroppen efter 10 timmar. Sätt detta uttryck lika med 15 och lös ut a.
En detalj bara:
Summan av den geometriska serien är den mängd medicin som är kvar i kroppen efter den tionde dosen, dvs efter 9 timmar, eftersom den första ges nu, vid tidpunkt 0.
Du har så rätt.
Arktos skrev:Lös ekvationen.
Bestäm a om det var det som man frågade efter ...
Jag hänger inte med riktigt, har fastnat totalt vet absolut inte hur jag ska gå vidare. Har hållt på och tittat och testat i ca 1 timme nu utan att komma fram.
Läs igenom frågan. Vad är det man frågar efter?