10 svar
436 visningar
K.Ivanovitj 399 – Fd. Medlem
Postad: 7 aug 2017 17:20

Geometri

Hej, jag skulle behöva lite hjälp med följande uppgift:

Låt τ vara en cirkel med medelpunkten O och låt A vara en punkt på τ. Kordan BC skär sträckan OA i punkten D. Visa att BC2*AD

 

Jag förstår inte riktigt hur det är meningen att man ska visa att BC är större.

Smaragdalena 80504 – Avstängd
Postad: 7 aug 2017 18:04

Har du ritat? Det bör alltid vara första steget.

K.Ivanovitj 399 – Fd. Medlem
Postad: 8 aug 2017 11:13

ja bilder ska vara såhär: men jag är tyvärr inte säker på hur man ska göra

DestiNeoX 69 – Fd. Medlem
Postad: 8 aug 2017 14:45 Redigerad: 8 aug 2017 14:49

Du kan snabbt identifiera att längden på sträckan BC kommer vara "d", där "d" motsvarar diametern på cirkeln. 
Om vi ponerar att punkten D sammanfaller i punkten O ( alltså att BC skär AO i mittpunkten), då är längden på sträckan "AD" exakt lika med radien ( r ), I.e BC = 2 * AD. 
Annars kommer den skära sträckan AO i någon annan punkt, varpå BC > AD... och där har du beviset färdigt.
Notera här att du kommer aldrig kunna få sträckan AD att bli längre än radien.. eftersom då måste du passera "O" vid något tillfälle.

SeriousCephalopod 2696
Postad: 8 aug 2017 14:51

Rita cirkeln med centrum i D och radie AD.

SeriousCephalopod 2696
Postad: 8 aug 2017 14:55
DestiNeoX skrev :

Du kan snabbt identifiera att längden på sträckan BC kommer vara "d", där "d" motsvarar diametern på cirkeln. 

Va?

DestiNeoX 69 – Fd. Medlem
Postad: 8 aug 2017 16:18

 Ja precis jag tänkte helt fel Serious!, bra att du poängterade det där haha. 

SeriousCephalopod skrev :

Rita cirkeln med centrum i D och radie AD.

Snyggt. Men det behövs väl även ett resonemang?

SeriousCephalopod 2696
Postad: 10 aug 2017 00:14
Yngve skrev :
SeriousCephalopod skrev :

Rita cirkeln med centrum i D och radie AD.

Snyggt. Men det behövs väl även ett resonemang?

Medan det finns en skönhet i det axiomatiska resonemangets prosa är den inget mot den talande bildens poesi.

Det sagt

Låt γ vara cirkeln med centrum i D och radie AD.

γ tangerar då Γ endast i A. Detta eftersom om det funnits en andra skärningspunkt A' (det tas som axiomatiskt att två cirklar skär varandra i maximalt två punkter) så skulle OA och OA' nödvändigtvis vara lika då de båda är radier till Γ men detta är omöjligt. För att se detta beteckna radien till Γ med R och radien till γ med. Triangeln ODA' implicerar via triangelolikheten att R < OD + r medan att O,D, och A ligger på en linje indikerar att R = OD + r. Detta är en motsägelse och därmed tangerar cirklarna.

γ är därmed sånär som på A helt innesluten i Γ då dess centrum finns i Γ.**

 

Givet detta måste DC skära γ då om så ej var fallet  skulle linjen DC förlängd bortom C skära γ i C', och detta skulle indikera att γ och Γ inte tangerade varandra

Då DC skär γ så är DC > r (DA). Slutsatsen följer trivialt av att applicera sista resonemangskedjan på DB symmetri. 

**Detta tar jag som ett axiom då jag inte orkar tänka ut delbeviset utifrån elementära principer.

Yngve Online 40141 – Livehjälpare
Postad: 10 aug 2017 08:56 Redigerad: 10 aug 2017 09:08

Ja nu när jag tittar på bilden igen så ser jag att det måste vara så. Kordan BC är alltid längre än eller lika lång som diametern i cirkeln med centrum i D och radie AD. Likhet då D sammanfaller med O.

Detta eftersom den delen av BC som ligger i cirkeln utgör en diameter däri.

Jag fattar inte nu vad det var jag hakade upp mig på igår.

Guggle 1364
Postad: 10 aug 2017 13:40 Redigerad: 10 aug 2017 13:45

Ett alternativt resonemang som bygger på hur man ska placera A för att maximera AD givet B och C.

Att maximera AD är samma sak som att minimera OD. OD minimeras då punkten A placeras exakt mitt emellan B och C eftersom det kortaste avståndet mellan punkt (O) och en punkt på linjen (BC)  måste vara den linje som möter BC under rät vinkel (det vinkelräta avståndet). Då B och C placeras på maximalt avstånd erhålls BC=2AD.

 

Vill man kan man gå vidare, för övriga placeringar av BC med A mitt emellan gäller

BCAD=2Rsin(u2)R(1-cos(u2))=2tan(u/4) \frac{BC}{AD}=\frac{2R\sin(\frac{u}{2})}{R(1-\cos(\frac{u}{2}))}=\frac{2}{\tan(u/4)}

Där u är medelpunktsvinkeln B-C och R är radien.

Svara
Close