6 svar
92 visningar
Aorta behöver inte mer hjälp
Aorta 356
Postad: 7 mar 09:54

Generaliserad integral

Hej! Jag förstår inte hur denna integralen skulle kunna vara konvergent när vi fått givet av uppgiften att den går mot oändligheten då x går mot 0+ och mot 0 då x går mot oändligheten. Jag skulle förstå om den gick mot oändligheten då x-> oändligheten och minus oändligheten då x-> 0 eller liknande. Då tänker jag att de hade kunnat ”ta ut varandra” på ett annat sätt. 

Tomten 1851
Postad: 7 mar 18:34

Om f(x)=2/x2  så har vi f—>oändl om x—>0 och f—>0 när x—>oändl. Den primitiva fknen F(x) —>oändl när x->0 och F(x)—>0 när x—>oändl. Den är då konvergent i den”övre” regionen och divergent i den ”undre”. Alltså rakt motsatt det du intuitivt tycker. Eftersom det var givet att f>=0 alla x så kan inte heller någon del av integralen ” ta ut” en annan, (s k betingad konvergens.)

Aorta 356
Postad: 8 mar 10:09

Tack för förtydligandet och bra exempel. Det jag ej förstår är hur funktionen kan vara konvergent när vi har fått av uppgiften att den går mot oändligheten i ena ”änden av integralen”. Jag tycker att det då i sig själv säger att den inte är konvergent. För att en funktion ska vara konvergent måste Den väl vara konvergent i båda ändarna?

Tomten 1851
Postad: 8 mar 11:33

I det exemplet jag gav var det bara den övre änden som var konvergent. Den undre är divergent, så hela integralen är då divergent. Exemplet svarade alltså bara på den senare frågan. Prova att integrera f(x)=| ln x | Vad går f mot när x—>0 ? Vad går F(x)=|x ln x -1 | mot?

Aorta 356
Postad: 8 mar 12:27

Ja, precis. Jag menar på uppgiften jag hade problem med från början. Där vet jag att den är divergent i ena "änden" då de sagt det i uppgiften. Hur kan jag då visa att den är konvergent? Den är ju inte det då ena änden är divergent tänker jag!

Tomten 1851
Postad: 8 mar 13:50

 Uppg a: informationen om f räcker inte för att visa vare sig konvergens eller divergens, vilket våra exempel visar. Uppgiften är att Definiera vad konvergens betyder i den aktuella situationen. Du är på rätt väg genom att dela upp integrationsintervallet ii ett övre och ett undre område.

Det är i uppg b som något kan visas.

Aorta 356
Postad: 12 mar 14:31

Tack för all hjälp. Jag tror att jag hänger med nu!

Svara
Close