11 svar
126 visningar
Nichrome 1848
Postad: 14 jan 2022 11:36

Gemensamma asymptoter

De rationella funktioner f och g, där 

f(x) = ax² + 34x+1   g(x) =3x²+bxx+1

har en gemensam asymptot. Bestäm denna samt konstanter a och b 

 

Deras gemensamma asymptot är inte lodrätt eftersom f är odefinierad för x = -1/4 och g är odefinierad för x = -1. De kan inte heller ha horisontella asymptoter eftersom graden av täljaren är större än nämnaren. Alltså har de en gemensam sned asymptot. Jag är osäker på hur man bestämmer sned asymptot men jag räknade gränsvärdet för båda funktionerna

x²x²(a+3x²4x+1x²) g =x²x²(3+bx1x+1x²)

om x går mot noll och båda har en gemensam asymptot dvs samma gränsvärde 

då är a = 3  

och f(x)= 3x² + 34x+1

Laguna Online 30404
Postad: 14 jan 2022 11:45

Varför ska x gå mot 0?

Nichrome 1848
Postad: 14 jan 2022 15:24
Laguna skrev:

Varför ska x gå mot 0?

x går väl mot oändligheten?

Smaragdalena 80504 – Avstängd
Postad: 14 jan 2022 15:34

Ja, just det. Vilken asymptot har f(x) när x går mot oändligheten? Det blir ett uttryck där den okända konstanten a ingår. Vilken asymptot har g(x) när x går mot oändligheten? Det blir ett uttryck där den okända konstanten b ingår.

Skriv detta, så kan vi gå vidare därifrån.

Nichrome 1848
Postad: 14 jan 2022 16:02
Smaragdalena skrev:

Ja, just det. Vilken asymptot har f(x) när x går mot oändligheten? Det blir ett uttryck där den okända konstanten a ingår. Vilken asymptot har g(x) när x går mot oändligheten? Det blir ett uttryck där den okända konstanten b ingår.

Skriv detta, så kan vi gå vidare därifrån.

ursäkta, märkte att jag skrev fel i min text men jag räknade ut det så som om x går mot oändligheten 

Smaragdalena 80504 – Avstängd
Postad: 14 jan 2022 16:11

OK, jag ser att du har räknat fram värdet på konstanten a, men vilket värde har b?

Laguna Online 30404
Postad: 14 jan 2022 16:17

Menar ni att fyran i nämnaren inte har någon betydelse?

Nichrome 1848
Postad: 14 jan 2022 16:24
Smaragdalena skrev:

OK, jag ser att du har räknat fram värdet på konstanten a, men vilket värde har b?

3?

Smaragdalena 80504 – Avstängd
Postad: 14 jan 2022 17:56
Laguna skrev:

Menar ni att fyran i nämnaren inte har någon betydelse?

Jo, den tappade jag bort... Ursäkta!

Laguna Online 30404
Postad: 14 jan 2022 18:29

Den metod jag skulle använda är att utföra polynomdivisionen.

En annan är att få fram a genom att ta gränsvärdet av f(x)/x när x går mot oändligheten.
Sedan b genom att ta gränsvärdet av f(x)-ax.

Nichrome 1848
Postad: 15 jan 2022 11:12
Laguna skrev:

Den metod jag skulle använda är att utföra polynomdivisionen.

En annan är att få fram a genom att ta gränsvärdet av f(x)/x när x går mot oändligheten.
Sedan b genom att ta gränsvärdet av f(x)-ax.

jag försökte räkna ut a mha andra metoden, stämmer det inte? 

PATENTERAMERA Online 5945
Postad: 16 jan 2022 00:20 Redigerad: 16 jan 2022 00:20

Nej, det stämmer inte.

Du kan använda polynomdivision eller den metod som Laguna föreslår.

Ett annat sätt är att inse att om båda funktionerna har samma sneda asymptot y = kx + m då x går mot positiva (eller negativa) oändligheten så måste f(x) - g(x) gå mot noll då x går mot positiva (negativa) oändligheten.

Efter lite räkning så erhåller man att

f(x)-g(x) = (a-12)x3+(a-3-4b)x2+(3-b)x+3(4x+1)(x+1).

Detta uttryck går mot noll då x går mot positiva (negativa) oändligheten omm

a - 12 = 0

a - 3 - 4b = 0,

dvs om

a = 12

b = 9/4.

Svara
Close