20 svar
530 visningar
sannakarlsson1337 behöver inte mer hjälp
sannakarlsson1337 590
Postad: 27 dec 2020 11:54

Gauss sats

Hej!

Jag har stött på ibland att de använder enl denna uppg:

de gulmarkerade.

 

Men i denna uppg, så använder de inte kryssprodukten utan kör bara: 

Vad är det för skillnad när de inte räknar ut kryssprodukten sådär?

Dr. G 9483
Postad: 27 dec 2020 12:50

I båda fallen är ytan del av ett plan med normalriktning längs z-axeln. 

Man kan då direkt ta normalen som ±(0,0,1), utan att parametrisera och kryssa derivatorna. 

Tecknet på ± väljs så att normalen pekar utåt. 

sannakarlsson1337 590
Postad: 29 dec 2020 15:09
Dr. G skrev:

I båda fallen är ytan del av ett plan med normalriktning längs z-axeln. 

Man kan då direkt ta normalen som ±(0,0,1), utan att parametrisera och kryssa derivatorna. 

Tecknet på ± väljs så att normalen pekar utåt. 

"orienterad bort"- är det minustecken då?

Smaragdalena 80504 – Avstängd
Postad: 29 dec 2020 16:40

"orienterad bort"- är det minustecken då?

Minustecken betyder att normalen är riktad neråt. Så det beror på om det är ovansidan eller undersidan du pratar med.

sannakarlsson1337 590
Postad: 29 dec 2020 17:10 Redigerad: 29 dec 2020 17:11
Smaragdalena skrev:

"orienterad bort"- är det minustecken då?

Minustecken betyder att normalen är riktad neråt. Så det beror på om det är ovansidan eller undersidan du pratar med.

vette tusan vad jag menar, för jag förstår knappt ens vad det är. Majoriteten av alla jag sett är N=(0,0,-1) (Är det moturs då?)

https://gamla.pluggakuten.se/forumserver/viewtopic.php?id=80036

Smaragdalena 80504 – Avstängd
Postad: 29 dec 2020 17:43

Som vanligt: Rita!

sannakarlsson1337 590
Postad: 30 dec 2020 09:36 Redigerad: 30 dec 2020 09:46
Smaragdalena skrev:

Som vanligt: Rita!

men jag säger att jag inte förstår, hur ska jag kunna rita något som jag inte förstår? alltså jag ser ju vad texten säger.  

  • Men frågan var OM jag går så som han skriver - det jag markerar med rosa i skärmdumpen - är det N=(0,0,-1)?
  • eller om man har en halvsfär med x2+y2+z2=1,z0x^2+y^2+z^2= 1, z \ge 0 - i då Gauss sats tex - då lägger vi ju till ett 'botten' i varje uppg jag sett på alla mina gamla tentor så har man alltid N=(0,0,-1) det är inget jag har tänkt på förens nu. Varför är N=(0,0,-1) i det här fallet? och inte positiv? Är det för att i uppg står det, utåtriktad normal? eh nej. nu såg jag att i bägge fallen så var de oriternade bort från z-axeln, så det kan inte heller va fallet. 
Qetsiyah 6567 – Livehjälpare
Postad: 30 dec 2020 10:37 Redigerad: 30 dec 2020 11:08

Ha bilden av ett halvklot i huvudet, just nu pratar vi om bottenytan. Bottenytan är ett plan, så dess normal kan vara (0,0,1) eller -(0,0,1), men vi ska välja -(0,0,1) för att normalen ska peka ut från kroppen K.

I inlägget du länkar till är en uppgift där personen ska använda stokes sats för att beräkna en linjeintegral. Linjen har en orientering, och givet den så kan vi föreställa oss dess promenad för att bestämma den inneslutna ytans (en sne cirkel) normal. I vårt fall handlar det om Gauss sats och vi bryr oss inte om randens orientering, det enda vi vill är att normalen pekar ut från kroppen.

https://mathinsight.org/stokes_theorem_orientation

Inga konstigheter?

Jroth 1191 – Fd. Medlem
Postad: 30 dec 2020 11:13 Redigerad: 30 dec 2020 11:18

En ytnormal är en pil (vektor) som är vinkelrät mot en yta. Eftersom ytor i regel har två sidor finns det alltid två möjliga normaler.

Låt oss lägga till ett grönt lock på toppen till en blå begränsningsyta.

Om vi vill hitta normalen till det gröna locket finns det alltså två möjligheter, antingen pekar normal UT från röret, så här

Eller också pekar normalen (fortfarande vinkelrät mot den gröna ytan) in mot röret. För att vi ska kunna se det tydligt vrider vi lite på röret också:

I det första fallet pekar den röda pilen (vektorn) utmed z-axeln och skulle få värdet N=(0,0,1)\mathrm{N}=(0,0,1), i det andra fallet pekar den röda pilen motsatt z-axeln och skulle få värdet N=(0,0,-1)\mathrm{N}=(0,0,-1).

För att använda Gauss sats vill vi att både locket och botten ska ha pilar som pekar BORT från (eller ut från) begränsningsytan (och nu tar vi också med normaler till den BLÅ ytan:

Därför kommer en utåtriktad normal från locket vara N=(0,0,1)\mathbf{N}=(0,0,1) (utmed z-axeln, uppåt), bottenplattans normal är riktad N=(0,0,-1)\mathbf{N}=(0,0,-1) (ut från botten, nedåt) och mantelytans normal är riktad ut från z-axeln i radiell led N=r^\mathbf{N}=\hat{r} (den är alltså lättare att uttrycka i cylinderkoordinater)

sannakarlsson1337 590
Postad: 30 dec 2020 12:38 Redigerad: 30 dec 2020 12:39
Qetsiyah skrev:

Ha bilden av ett halvklot i huvudet, just nu pratar vi om bottenytan. Bottenytan är ett plan, så dess normal kan vara (0,0,1) eller -(0,0,1), men vi ska välja -(0,0,1) för att normalen ska peka ut från kroppen K.

I inlägget du länkar till är en uppgift där personen ska använda stokes sats för att beräkna en linjeintegral. Linjen har en orientering, och givet den så kan vi föreställa oss dess promenad för att bestämma den inneslutna ytans (en sne cirkel) normal. I vårt fall handlar det om Gauss sats och vi bryr oss inte om randens orientering, det enda vi vill är att normalen pekar ut från kroppen.

https://mathinsight.org/stokes_theorem_orientation

Inga konstigheter?

nvm

sannakarlsson1337 590
Postad: 30 dec 2020 12:40
Jroth skrev:

En ytnormal är en pil (vektor) som är vinkelrät mot en yta. Eftersom ytor i regel har två sidor finns det alltid två möjliga normaler.

Låt oss lägga till ett grönt lock på toppen till en blå begränsningsyta.

Om vi vill hitta normalen till det gröna locket finns det alltså två möjligheter, antingen pekar normal UT från röret, så här

Eller också pekar normalen (fortfarande vinkelrät mot den gröna ytan) in mot röret. För att vi ska kunna se det tydligt vrider vi lite på röret också:

I det första fallet pekar den röda pilen (vektorn) utmed z-axeln och skulle få värdet N=(0,0,1)\mathrm{N}=(0,0,1), i det andra fallet pekar den röda pilen motsatt z-axeln och skulle få värdet N=(0,0,-1)\mathrm{N}=(0,0,-1).

För att använda Gauss sats vill vi att både locket och botten ska ha pilar som pekar BORT från (eller ut från) begränsningsytan (och nu tar vi också med normaler till den BLÅ ytan:

Därför kommer en utåtriktad normal från locket vara N=(0,0,1)\mathbf{N}=(0,0,1) (utmed z-axeln, uppåt), bottenplattans normal är riktad N=(0,0,-1)\mathbf{N}=(0,0,-1) (ut från botten, nedåt) och mantelytans normal är riktad ut från z-axeln i radiell led N=r^\mathbf{N}=\hat{r} (den är alltså lättare att uttrycka i cylinderkoordinater)

Men gud vilken bra förklaring!! det var helt fantastisk!! 

tack så jätte-jättemyckt!

sannakarlsson1337 590
Postad: 4 jan 2021 17:53
Jroth skrev:

En ytnormal är en pil (vektor) som är vinkelrät mot en yta. Eftersom ytor i regel har två sidor finns det alltid två möjliga normaler.

Låt oss lägga till ett grönt lock på toppen till en blå begränsningsyta.

Om vi vill hitta normalen till det gröna locket finns det alltså två möjligheter, antingen pekar normal UT från röret, så här

Eller också pekar normalen (fortfarande vinkelrät mot den gröna ytan) in mot röret. För att vi ska kunna se det tydligt vrider vi lite på röret också:

I det första fallet pekar den röda pilen (vektorn) utmed z-axeln och skulle få värdet N=(0,0,1)\mathrm{N}=(0,0,1), i det andra fallet pekar den röda pilen motsatt z-axeln och skulle få värdet N=(0,0,-1)\mathrm{N}=(0,0,-1).

För att använda Gauss sats vill vi att både locket och botten ska ha pilar som pekar BORT från (eller ut från) begränsningsytan (och nu tar vi också med normaler till den BLÅ ytan:

Därför kommer en utåtriktad normal från locket vara N=(0,0,1)\mathbf{N}=(0,0,1) (utmed z-axeln, uppåt), bottenplattans normal är riktad N=(0,0,-1)\mathbf{N}=(0,0,-1) (ut från botten, nedåt) och mantelytans normal är riktad ut från z-axeln i radiell led N=r^\mathbf{N}=\hat{r} (den är alltså lättare att uttrycka i cylinderkoordinater)

Men grejen är... hur kommer det sig till denna uppg: 

den här har ju ett "lock" då ska ju den ha ett positiv etta hos sin normal, men enl facit så har de en negativ etta?

Smaragdalena 80504 – Avstängd
Postad: 4 jan 2021 23:14

Y är en del av en ellipsoid med normalen riktad uppåt, locket har normalen neråt. Som vanligt: Rita!

Här är elipsoiden:

sannakarlsson1337 590
Postad: 5 jan 2021 09:24 Redigerad: 5 jan 2021 09:26
Smaragdalena skrev:

Y är en del av en ellipsoid med normalen riktad uppåt, locket har normalen neråt. Som vanligt: Rita!

Här är elipsoiden:

Kan inte se bilden, 

Men jag ritade den såhär iallfall.

 

och därför undrar jag varför den har normal (enl facit -(0,0,1) och iten (0,0,1)

jag ritade den ju så, därför blir det 

Smaragdalena 80504 – Avstängd
Postad: 5 jan 2021 10:18

Det är locket på undersidan som har normalen riktad neråt. Ellipsoidytan har normalen uppåt.

sannakarlsson1337 590
Postad: 5 jan 2021 10:39 Redigerad: 5 jan 2021 10:39
Smaragdalena skrev:

Det är locket på undersidan som har normalen riktad neråt. Ellipsoidytan har normalen uppåt.

  • förlåt kanske är trög, "Det är locket på undersidan som har normalen riktad neråt."   ~locken på undersida, alltså en bottenyta? 
  • men jag fattar inte. Har jag ritat figuren fel?
Skaft 2373 – F.d. Moderator
Postad: 5 jan 2021 11:10

Ja, din figur är upp-och-ner: För ellipsoiden gäller z0z\geq 0, så z-värdet är minst noll. Notera att ekvationen blir enhetscirkeln om z=0:

x2+y2+4·02=1    x2+y2=1x^2 + y^2 +4\cdot 0^2 = 1 \quad \Leftrightarrow \quad x^2+y^2 = 1

Här bildas alltså ett "hål". Sen ju mer z ökar, desto mindre blir xy-cirkelns radie, fram till z=1/2 där cirkeln helt försvinner:

x2+y2+4·122=1    x2+y2=0x^2 + y^2 +4\cdot \left(\dfrac{1}{2}\right)^2 = 1 \quad \Leftrightarrow \quad x^2+y^2 = 0

Där finns alltså inte ett hål. Så ellipsoidens slutna "topp" är i z=1/2, och den öppna botten är i z=0. Den platta ytan som läggs till är alltså en botten, under ellipsoiden. Och bottenytans normal ska peka bort från ellipsoiden, så den går nedåt.

Smaragdalena 80504 – Avstängd
Postad: 5 jan 2021 11:23

Din bild är upp-och-ner jämfört med den kropp som uppgiften beskriver. Det står ju att ytan Y är den del av ellipsoiden {bblablaba} där z0z\ge0 (med uppåtriktad normal) och att man kompletterar ytan Y med botten Y1. Då får bottenytan en nedåtriktad normal.

(Jag undrar vart ellisoiden försvann!)

sannakarlsson1337 590
Postad: 5 jan 2021 11:38 Redigerad: 5 jan 2021 11:38

Okej!

Tack så mycket @Smaragdalena & @Skaft! 

sannakarlsson1337 590
Postad: 5 jan 2021 14:54

Men en fråga till, om man har en uppg som säger "N pekar mot z-axeln", då andra jag att den inåt? klassas det som upp eller ned? (negativ eller positiv normal, jag skulle gissa på positiv eftrso ett flöde inåt???)

Smaragdalena 80504 – Avstängd
Postad: 5 jan 2021 18:32 Redigerad: 5 jan 2021 18:45
sannakarlsson1337 skrev:

Men en fråga till, om man har en uppg som säger "N pekar mot z-axeln", då andra jag att den inåt? klassas det som upp eller ned? (negativ eller positiv normal, jag skulle gissa på positiv eftrso ett flöde inåt???)

sannakarlsson1337, det står i Pluggakutens regler att man bara skall ha en enda fråga i varje tråd. Gör en ny tråd om din nya fråga, så blir det mindre rörigt. Om du fortsätter bryta mot Pluggakutens regler riskerar du att bli avstängd. /moderator

För övrigt är svaret på din fråga som vanligt: Rita! Hur skulle du kunna se åt vilket håll normalen skall vara utan att rita?

Svara
Close