10 svar
329 visningar
Bärgarn behöver inte mer hjälp
Bärgarn 11 – Fd. Medlem
Postad: 9 apr 2021 15:51

Funktionen f (x) = x^4 − 4x^3 − 20x^2 har en eller flera minimipunkter. Bestäm denna/dessa.

Hejsan! 
Jag har försökt mig på denna uppgift länge nu men jag har fastnat.
Jag har löst allt fram till att få fram y-värdena men dom jag får fram verkar orimliga. I bilden nedan syns mina uträkningar hittills.

Smutstvätt 25191 – Moderator
Postad: 9 apr 2021 16:00

Du gör rätt fram tills att du börjar på papper två. Vilka x-värden har dina minimipunkter? :)

Bärgarn 11 – Fd. Medlem
Postad: 9 apr 2021 16:08

Jag har skrivit f''(x)=12x²-24x-40 och sedan har jag skrivit in x-värdena i den ekvationen som är 0, -2 och 5. Så får jag fram att
f''(0)= -40
f''(-2)=56
f''(5)= 140

Och minimipunkterna är 56 samt 140. Då tog ja de två x värdena och tog in dom i den ursprungliga formeln och fick fram det som står på papper två

Smutstvätt 25191 – Moderator
Postad: 9 apr 2021 16:10

Värdena av f''(x) är inte minimipunkternas x-värden, utan minimipunkternas x-värden är -2 och 5. Om du stoppar in dessa x-värden i f(x) igen kommer du att få ut minimipunkternas y-värden. :)

Bärgarn 11 – Fd. Medlem
Postad: 9 apr 2021 16:12
Smutstvätt skrev:

Värdena av f''(x) är inte minimipunkternas x-värden, utan minimipunkternas x-värden är -2 och 5. Om du stoppar in dessa x-värden i f(x) igen kommer du att få ut minimipunkternas y-värden. :)

Jaha, så jag har gjort fel där jag skrev sist på papperet? Allt efter det att jag fick ut x1=0 x2=-2 x3=5 är inget som behöver vara med i uträkningen?

Bärgarn 11 – Fd. Medlem
Postad: 9 apr 2021 16:17
Bärgarn skrev:
Smutstvätt skrev:

Värdena av f''(x) är inte minimipunkternas x-värden, utan minimipunkternas x-värden är -2 och 5. Om du stoppar in dessa x-värden i f(x) igen kommer du att få ut minimipunkternas y-värden. :)

Jaha, så jag har gjort fel där jag skrev sist på papperet? Allt efter det att jag fick ut x1=0 x2=-2 x3=5 är inget som behöver vara med i uträkningen?

Och det som återstår är f''(-2) som får y värdet 96 och f''(5) får y värdet -375. Men är det fortfarande båda dom två minimipunkter eller blir f''(5) en maximipunkt eftersom det blir -375?

Bärgarn 11 – Fd. Medlem
Postad: 9 apr 2021 16:21
Bärgarn skrev:
Bärgarn skrev:
Smutstvätt skrev:

Värdena av f''(x) är inte minimipunkternas x-värden, utan minimipunkternas x-värden är -2 och 5. Om du stoppar in dessa x-värden i f(x) igen kommer du att få ut minimipunkternas y-värden. :)

Jaha, så jag har gjort fel där jag skrev sist på papperet? Allt efter det att jag fick ut x1=0 x2=-2 x3=5 är inget som behöver vara med i uträkningen?

Och det som återstår är f''(-2) som får y värdet 96 och f''(5) får y värdet -375. Men är det fortfarande båda dom två minimipunkter eller blir f''(5) en maximipunkt eftersom det blir -375?

Smutstvätt 25191 – Moderator
Postad: 9 apr 2021 17:47

Minimivärdet (5, -375) stämmer men för (-2) blir det inte helt rätt. Var noga med parenteserna när du slår in (-2) på räknaren. :)

Bärgarn 11 – Fd. Medlem
Postad: 9 apr 2021 17:55
Smutstvätt skrev:

Minimivärdet (5, -375) stämmer men för (-2) blir det inte helt rätt. Var noga med parenteserna när du slår in (-2) på räknaren. :)

Okej, då förstår jag! Då är det en sista sak jag funderar på. På bilden på mina uträkningar som jag la upp, behöver jag ha med följande:
f'(x)=4x²-12x²-40x
f''(x)=12x²-24x-40
f''(0)= -40
f''(-2)=56
f''(5)= 140 

i min slutgiltiga uträkning?

Bärgarn 11 – Fd. Medlem
Postad: 9 apr 2021 18:05

Är detta korrekt och fullständigt svar? Samt att jag lägger till koordinaterna (-2,88) (5,-375)

Smutstvätt 25191 – Moderator
Postad: 9 apr 2021 19:02
Bärgarn skrev:
Smutstvätt skrev:

Minimivärdet (5, -375) stämmer men för (-2) blir det inte helt rätt. Var noga med parenteserna när du slår in (-2) på räknaren. :)

Okej, då förstår jag! Då är det en sista sak jag funderar på. På bilden på mina uträkningar som jag la upp, behöver jag ha med följande:
f'(x)=4x²-12x²-40x
f''(x)=12x²-24x-40
f''(0)= -40
f''(-2)=56
f''(5)= 140 

i min slutgiltiga uträkning?

Ja, det behövs, eftersom det är så du valt att identifiera vilka extremvärden som är minimivärden. Teckentabell hade också fungerat. :)

Din uträkning av f(-2)f(-2) är inte helt rätt. Du har ställt upp rätt, men det verkar ha blivit knas på vägen.

f(-2)=(-2)4-4·(-2)3-20·(-2)2=16+32-80=-32f(-2)=(-2)^4-4\cdot(-2)^3-20\cdot(-2)^2=16+32-80=-32

:)

Svara
Close