3 svar
122 visningar
bellisss 261
Postad: 26 nov 2019 17:25

funktion

uppgift 46: g(x) är en linjär funktion med värdemängden -2< y < 2 och definitionsmängden -4 < x < 4

Bestäm g(3). Observera att det finns två lösningar.

Hur ska man börja tänka här? För jag förstår verkligen inte.

Yngve 40288 – Livehjälpare
Postad: 26 nov 2019 17:53 Redigerad: 26 nov 2019 17:54
bellisss skrev:

uppgift 46: g(x) är en linjär funktion med värdemängden -2< y < 2 och definitionsmängden -4 < x < 4

Bestäm g(3). Observera att det finns två lösningar.

Hur ska man börja tänka här? För jag förstår verkligen inte.

Att g(x) är en linjär funktion innebär att g(x) = kx + m, dvs en rät linje.

Rita ett koordinatsystem och markera både definitionsmängd och värdemängd.

x ska anta alla värden i definitionsmängden och g(x) ska anta alla värden i värdemängden.

Det innebär att det endast finns två möjliga utseenden för g(x).

Kan du med hjälp av figuren se vilka?

bellisss 261
Postad: 27 nov 2019 17:21
Yngve skrev:
bellisss skrev:

uppgift 46: g(x) är en linjär funktion med värdemängden -2< y < 2 och definitionsmängden -4 < x < 4

Bestäm g(3). Observera att det finns två lösningar.

Hur ska man börja tänka här? För jag förstår verkligen inte.

Att g(x) är en linjär funktion innebär att g(x) = kx + m, dvs en rät linje.

Rita ett koordinatsystem och markera både definitionsmängd och värdemängd.

x ska anta alla värden i definitionsmängden och g(x) ska anta alla värden i värdemängden.

Det innebär att det endast finns två möjliga utseenden för g(x).

Kan du med hjälp av figuren se vilka?

Att g(x) kan både vara positiv och negativ? Eller? jag förstår tyvärr inte. 

Smaragdalena 80504 – Avstängd
Postad: 27 nov 2019 17:53

Linjens lutning kan antingen vara positiv eller negativ. Rita! Yngve beskrev hur. Lägg upp bilden här när du har gjort det.

Svara
Close