9 svar
105 visningar
som314 behöver inte mer hjälp
som314 270
Postad: 10 maj 12:21

Fråga 38: z=bi-5

Jag förstår inte varför jag får -2.4, jag hänger med på att det kommer från -5 men vad är det jag gör fel som gör att det blir negativt?

 

Dessutom hänger jag inte med på formlen tanv=b/a. Det kan väl vara a/b också om figuren är i andra kvadranten? Finns någon någon sorts härledning till formeln online, YouTube video eller någon artikel?

Trinity2 Online 1994
Postad: 10 maj 12:43

Den triangel som du riktigt räknar på kan ej ha en negativ sida. Alla sidor måste vara positiva i en triangel. Då blir den vertikala kateten positiv och rätt.

som314 270
Postad: 10 maj 12:46

Menar du så här?

Jan Ragnar 1947
Postad: 10 maj 23:55

tan(x) är definierat för -♾️ < tan(x) < ♾️ medan arctan(x) bara är definierat för

-π/2 <  arctan(x) < π/2.

Då är v = arctan(-b/5) = (6/7)π - π = -π/7

så att b = 5•tan(π/7) = 2,41

som314 270
Postad: 11 maj 14:03

Då betyder du från -pi/7 till pi/7 på sista raden. Är det okej att göra så? Betyder det samma sak?

Jan Ragnar 1947
Postad: 11 maj 19:04

som314 270
Postad: 11 maj 19:06

Jag kan inte se bilden som du har lagt upp.

Jan Ragnar 1947
Postad: 12 maj 12:29

Hoppas wikipediabilden syns nu.

som314 270
Postad: 12 maj 12:58

Jag förstår inte hur den här bilden kopppas till frågan. Kan du förklara?

som314 270
Postad: 3 jun 19:10 Redigerad: 3 jun 19:11

Jag hänger med nu, eftersom det är en längd på en triangel måste den vara positiv, man sätter helt enkelt längden i absolutbelopp.

 

Och vad som gäller formlen som står på formelbladet "tanv=b/a", känns det inte så hjälpsam eftersom den inte gäller särskilt ofta.

Svara
Close