17 svar
524 visningar
Gruvormon behöver inte mer hjälp
Gruvormon 64 – Fd. Medlem
Postad: 14 aug 2020 17:09

Finn alla vinklar mellan -pi och pi där (cosv^2)+sqrt(2) cosv=−1/2

Jag sätter cosv=y

y2+2y+12=0

Använder PQ formeln och får då. -22±24-24=-22

Jag sätter cosv-1=-22 =135°

Vi tittar på -pi till pi då bör det alltså bli från pi/4 till 3pi/4. Det är dock inte rätt, jag tycker att jag resonerar rätt men någon får gärna upplysa mig då jag får fel svar.

JohanF 5660 – Moderator
Postad: 14 aug 2020 17:35

Du ska hitta alla lösningar mellan -pi och pi, dvs -180 till 180 grader.

Så den lösning du fått fram borde stämma. Men det finns fler.

Vad säger facit, om det inte stämmer med ditt svar?

Gruvormon 64 – Fd. Medlem
Postad: 14 aug 2020 17:47 Redigerad: 14 aug 2020 17:48

Du menar att det finns fler vinklar?  pi/2 möjligen? jag har tyvärr inget facit. 

Laguna Online 30711
Postad: 14 aug 2020 17:48 Redigerad: 14 aug 2020 17:49

Du vet vad du gör, men det du skriver är inte bra. cosv-1\cos v^{-1} är nonsens, och -22=135°-\frac{\sqrt{2}}{2} = 135^{\circ} är inte sant.

v=cos-1(-22)=135°v = \cos^{-1}(-\frac{\sqrt{2}}{2}) = 135^{\circ} är det du menar.

Laguna Online 30711
Postad: 14 aug 2020 17:51
Gruvormon skrev:

Du menar att det finns fler vinklar?  pi/2 möjligen? jag har tyvärr inget facit. 

Att bara gissa är inte bra. Har du provat?

Titta på enhetscirkeln. Det finns en formel för cos som passar här.

Gruvormon 64 – Fd. Medlem
Postad: 14 aug 2020 18:05 Redigerad: 14 aug 2020 18:06

Jag misstänker att jag kan skriva problemet nu som v=3pi/4 +(-) n*pi men det ändå som funkar då är ju n=0 likadant med v=pi/4+(-) n*pi.

Eftersom jag ska hålla mig inom -pi och pi

JohanF 5660 – Moderator
Postad: 14 aug 2020 18:25 Redigerad: 14 aug 2020 18:26

Du hittade en korrekt vinkel (dock som Laguna skrev, det formella mattespråket blev fel).

För vilka vinklar i intervallet -180 till 180 grader, returnerar cos-operatorn samma  funktionsvärde som för 135grader.
Rita enhetscirkeln och titta!

Gruvormon 64 – Fd. Medlem
Postad: 14 aug 2020 18:34

Ja i 45° så pi/4, känns bara som jag upprepar mig här. Ser inte vad det kan bli annars. När du skriver -180 till 180 grader är det då samma som 0 till 180 grader? 

Laguna Online 30711
Postad: 14 aug 2020 18:37

Varför skulle 0 till 180 betyda samma som -180 till 180? Rita upp enhetscirkeln, pricka in 135 grader och visa här.

Smaragdalena 80504 – Avstängd
Postad: 14 aug 2020 18:40

När du skriver -180 till 180 grader är det då samma som 0 till 180 grader?

Nej, -180 till 180 grader är en hel cirkel och 0 till 180 grader är en halv cirkel.

Gruvormon 64 – Fd. Medlem
Postad: 14 aug 2020 18:43

Där är 135 grader markerat, Om jag startar från Noll och går 180 grader eller - 180 grader så hamnar jag väl på samma plats? men tar två olika vägar..

JohanF 5660 – Moderator
Postad: 14 aug 2020 19:03 Redigerad: 14 aug 2020 19:03
Gruvormon skrev:

Där är 135 grader markerat, Om jag startar från Noll och går 180 grader eller - 180 grader så hamnar jag väl på samma plats? men tar två olika vägar..


Jo visst, det gör du. Men det är inte ändpunkten 180 grader som är viktig. Det är INTERVALLET som är viktigt. Tex vinkeln -90 grader faller innanför mitt intervall, men den faller inte innanför det intervall som du tyckte var samma sak. Alltså är ditt intrvall inte samma sak.

Gruvormon 64 – Fd. Medlem
Postad: 14 aug 2020 19:19

Intervaller -180 till 180 är då ett helt varv. Då kommer det alltså finnas två negativa cos vinklar och två positiva?

JohanF 5660 – Moderator
Postad: 14 aug 2020 19:41

Du vet att 135 grader är en lösning till cos(v)=-1/sqrt(2). Och därmed lösning till uppgiftens ekvation.

Finns det någon annan vinkel u som också ger cos(u)=-1/sqrt(2)? Det kan du se i enhetscirkeln, om du kommer ihåg på vilken axel man avläser cos för en vinkel.

ConnyN 2584
Postad: 14 aug 2020 20:09

Jag vet inte om du får använda grafräknare, men eftersom du inte har facit så kan du göra så här:

1) Knappa in vänsterrledet som y1 = cos2v + 2cosv

2) Knappa in högerledet som y2 = -1/2

3) Studera grafen och var den korsar y2 = -1/2

Albiki 5096 – Fd. Medlem
Postad: 14 aug 2020 23:03

Hej Gruvormon,

  • Vinkeln vv ska anges i radianer, inte grader som du och andra skriver.
  • Du har kommit fram till resultatet att vinkelns cosinusvärde är det negativa talet -12-\frac{1}{\sqrt{2}}. Ritar du in den lodräta linjen x=-12x=-\frac{1}{\sqrt{2}} i ett xy-koordinatsystem, där du även ritat in Enhetscirkeln, ser du att linjen skär cirkeln i två punkter vilka motsvarar två vinklar v1v_1 och v2v_2 (radianer) vars cosinusvärde är -12-\frac{1}{\sqrt{2}}.
  • Den ena vinkeln är v1=3π/4v_1 = 3\pi/4 radianer och den andra är v2=-3π/4v_2 = -3\pi/4 radianer.
ConnyN 2584
Postad: 15 aug 2020 07:36

Det kan vara bra att komplettera med grafräknaren som jag beskrev ovan.

Där blir det väldigt tydligt när vi sätter in gränserna -π och +π eller om vi använder -180o och +180o

Jämför gärna med -2π och 2π eller -360o och +360o.

Det är också nyttig träning att skifta mellan radianer och grader på grafräknaren just med hjälp av det här exemplet.

Är det grafräknaren du får använda till vissa tal på provet så kan det vara en fördel att träna innan då den i många fall inom trigonometrin kan användas för att kolla sitt svar eller för den delen frågan.

Gruvormon 64 – Fd. Medlem
Postad: 15 aug 2020 10:11

Tack för hjälpen!

Svara
Close