Faktorisering
Hej!
Jag behöver hjälp med: Dela upp i så många faktorer som möjligt: x^2 + x − 12
Jag har tidigare faktoriserat uttryck där man lätt kunnat använda sig av konjugatregeln. Men denna har svaret (x+4)(x-3). Hur ska man tänka för att komma fram till det rätta svaret när b-värdet inom paranteserna skiljer sig åt?
Tack på förhand!
En variant är att lösa ekvationen
Annars är det så att ett andragradspolynom kan skrivas som produkten av två förstagradspolynom.
I ditt fall är då
-(a + b) = 1
ab = 12
Lös ekvationssystemet.
Men de vill att jag bara ska faktorisera x^2 + x -12 så långt som möjligt. Jag undrar bara hur de har kommit fram till (x+4)(x-3)?
Genom att göra som Dr G gjort ovan, dvs löst ekvationssystemet:
emeliefarnstrand skrev:Men de vill att jag bara ska faktorisera x^2 + x -12 så långt som möjligt. Jag undrar bara hur de har kommit fram till (x+4)(x-3)?
Lös ekvationen x2+x-12=0, exempelvis med hjälp av pq-formeln, precis som Dr.G skrev. Då får du att lösningarna är x=-4 respektive x=3, och då sätter du in de båda lösningarna i uttrycket p(x)=(x-a)(x-b), där a och b är lösningarna till ekvationen p(x)=0.
Smaragdalena skrev:emeliefarnstrand skrev:Men de vill att jag bara ska faktorisera x^2 + x -12 så långt som möjligt. Jag undrar bara hur de har kommit fram till (x+4)(x-3)?
Lös ekvationen x2+x-12=0, exempelvis med hjälp av pq-formeln, precis som Dr.G skrev. Då får du att lösningarna är x=-4 respektive x=3, och då sätter du in de båda lösningarna i uttrycket p(x)=(x-a)(x-b), där a och b är lösningarna till ekvationen p(x)=0.
Eller så löser du uppgiften på det sätt som det var avsett, genom faktorisering.
Euclid skrev:Smaragdalena skrev:emeliefarnstrand skrev:Men de vill att jag bara ska faktorisera x^2 + x -12 så långt som möjligt. Jag undrar bara hur de har kommit fram till (x+4)(x-3)?
Lös ekvationen x2+x-12=0, exempelvis med hjälp av pq-formeln, precis som Dr.G skrev. Då får du att lösningarna är x=-4 respektive x=3, och då sätter du in de båda lösningarna i uttrycket p(x)=(x-a)(x-b), där a och b är lösningarna till ekvationen p(x)=0.
Eller så löser du uppgiften på det sätt som det var avsett, genom faktorisering.
Var står det att det är så man skall göra? Jag har gjort precis det som stod i uppgiften: delat upp x2+x-12 i så många faktorer som möjligt.
Smaragdalena skrev:Euclid skrev:Smaragdalena skrev:emeliefarnstrand skrev:Men de vill att jag bara ska faktorisera x^2 + x -12 så långt som möjligt. Jag undrar bara hur de har kommit fram till (x+4)(x-3)?
Lös ekvationen x2+x-12=0, exempelvis med hjälp av pq-formeln, precis som Dr.G skrev. Då får du att lösningarna är x=-4 respektive x=3, och då sätter du in de båda lösningarna i uttrycket p(x)=(x-a)(x-b), där a och b är lösningarna till ekvationen p(x)=0.
Eller så löser du uppgiften på det sätt som det var avsett, genom faktorisering.
Var står det att det är så man skall göra? Jag har gjort precis det som stod i uppgiften: delat upp x2+x-12 i så många faktorer som möjligt.
Uppgiften handlade om att lösa ekvationen mha faktorisering, inte det omvända där du löser ekvationen för att hitta faktorerna.
Hur vet du det?
Att faktorisera utan att hitta rötterna är i alla fall omöjligt.
Faktorisering betraktar jag inte som en metod, utan som ett resultat.
I matte 2c från serien Matematik 5000 så kommer att faktorisera före lösning av andragradsekvationer.
Så jag tror att Smaragdalena har en poäng i det hon skriver och även inledande text i frågan säger det.
"Dela upp i så många faktorer som möjligt: x^2 + x − 12" som eleven uppger.
I just det avsnittet i matte 2c är angivet att det går att använda konjugat och kvadrerings-reglerna.
Prövar man sig litet fram med konjugatregeln typ så upptäcker man nog rätt snart vad svaret ska vara.
Vi underskattar ibland värdet av att se var eleven befinner sig tror jag.
Smaragdalena skrev:Hur vet du det?
Hur jag vet det? Jag läser frågan ... ett tips.
"Dela upp i så många faktorer som möjligt ..."
Mest sannolikt i syfte att lösa ekvationen.
Euclid skrev:Smaragdalena skrev:Hur vet du det?
Hur jag vet det? Jag läser frågan ... ett tips.
"Dela upp i så många faktorer som möjligt ..."
Mest sannolikt i syfte att lösa ekvationen.
Frågan var:
Dela upp i så många faktorer som möjligt: x^2 + x − 12
Var stod det något om hur detta skulle göras?
Tips
Läs vad som står PÅ raderna, inte mellan dem!
Smaragdalena skrev:Euclid skrev:Smaragdalena skrev:Hur vet du det?
Hur jag vet det? Jag läser frågan ... ett tips.
"Dela upp i så många faktorer som möjligt ..."
Mest sannolikt i syfte att lösa ekvationen.
Frågan var:
Dela upp i så många faktorer som möjligt: x^2 + x − 12
Var stod det något om hur detta skulle göras?
Tips
Läs vad som står PÅ raderna, inte mellan dem!
Tips
Ta inte allt så personligt här i livet.
Laguna skrev:Att faktorisera utan att hitta rötterna är i alla fall omöjligt.
Faktorisering betraktar jag inte som en metod, utan som ett resultat.
Det var två felaktiga påståenden:
- Rötterna hittas genom faktorisering, inte tvärt om
- Faktorisering är en metod att lösa ekvationer
Euclid skrev:Laguna skrev:Att faktorisera utan att hitta rötterna är i alla fall omöjligt.
Faktorisering betraktar jag inte som en metod, utan som ett resultat.
Det var två felaktiga påståenden:
- Rötterna hittas genom faktorisering, inte tvärt om
- Faktorisering är en metod att lösa ekvationer
1) Berätta vad du tycker att pq-metoden åstadkommer. För övrigt missförstod du. Jag skrev att om man har faktoriserat så har man hittat rötterna.
2) Berätta hur metoden faktorisering fungerar.
Laguna skrev:Euclid skrev:Laguna skrev:Att faktorisera utan att hitta rötterna är i alla fall omöjligt.
Faktorisering betraktar jag inte som en metod, utan som ett resultat.
Det var två felaktiga påståenden:
- Rötterna hittas genom faktorisering, inte tvärt om
- Faktorisering är en metod att lösa ekvationer
1) Berätta vad du tycker att pq-metoden åstadkommer. För övrigt missförstod du. Jag skrev att om man har faktoriserat så har man hittat rötterna.
2) Berätta hur metoden faktorisering fungerar.
1. Jag missförstod eftersom du inte var klar nog i ditt inlägg och det bör ju bemötas för att inte vilseleda en hel generation av blivande matematiker.
2. https://en.wikipedia.org/wiki/Factorization#General_methods
Euclid skrev:Laguna skrev:Euclid skrev:Laguna skrev:Att faktorisera utan att hitta rötterna är i alla fall omöjligt.
Faktorisering betraktar jag inte som en metod, utan som ett resultat.
Det var två felaktiga påståenden:
- Rötterna hittas genom faktorisering, inte tvärt om
- Faktorisering är en metod att lösa ekvationer
1) Berätta vad du tycker att pq-metoden åstadkommer. För övrigt missförstod du. Jag skrev att om man har faktoriserat så har man hittat rötterna.
2) Berätta hur metoden faktorisering fungerar.
1. Jag missförstod eftersom du inte var klar nog i ditt inlägg och det bör ju bemötas för att inte vilseleda en hel generation av blivande matematiker.
2. https://en.wikipedia.org/wiki/Factorization#General_methods
Där står många metoder för att åstadkomma en faktorisering.