5 svar
57 visningar
kristoffer2020 176
Postad: 30 aug 2023 07:15

Extremvärde med Taylorutveckling

Jag kom fram till att f''(0)=0 och tänkte då studera andraderivatan runt x=0 för att avgöra om den ändrar tecken. Men i lösningen till denna uppgift använder de Taylorutveckling vilket jag inte riktigt förstår då Taylorutveckling används för att approximera funktioner i närheten av en given punkt, så jag förstår inte dess koppling med andraderivata och extremvärde i detta sammanhang.

Varför inkluderar man just termen till och med grad 4 och varför subtraherar man med massa andra termer? Är det en allmän regel när man undersöker stationära punkter? 

Fermatrix 7841 – Fd. Medlem
Postad: 30 aug 2023 07:29

Hur ser maclaurin ut för exe^x?

kristoffer2020 176
Postad: 30 aug 2023 07:35 Redigerad: 30 aug 2023 07:47

1+x+x²/2!+x³/3!+x⁴/4!+... man kan ju inkludera fler termer med högre grader men det kanske är konvention att stanna vid grad 4?

Nu ser jag också att det inte är "en massa andra termer" det är ju maclaurin serierna för derivatafunktionens delar?

Fermatrix 7841 – Fd. Medlem
Postad: 30 aug 2023 08:02

Precis. Det är inte massa minus för att vi subtrahera saker. De förekommer pga utvecklingen av e-xe^{-x}. Varför grad 4? Det är absolut ingen konvention. Du kan prova att köra till O(x^3) och se vad som händer.

kristoffer2020 176
Postad: 8 sep 2023 16:16

Jag provade att Taylorutveckla tills O(x^3) och fick då att f(x)=-x^3/3+x^4+O(x^3), så jag antar att man vill inkludera fler termer tills att man kan ta bort -x^3/3. Jag provade sedan att köra tills O(x^4) och fick då samma svar som facit, så jag antar att man inte behöver göra som i lösningen och köra tills O(x^5)? 

 

Men hur drar de slutsatsen att f har ett lokalt minimum i x=0 endast baserat på vad f(x) blir med Taylorutveckling?

kristoffer2020 176
Postad: 8 sep 2023 16:17

Och varför inkluderar man O(x^5) bara hos e^x utvecklingen och inte i e^-x utvecklingen?

Svara
Close