1 svar
21 visningar
Toovee behöver inte mer hjälp
Toovee 32 – Fd. Medlem
Postad: 9 okt 2020 12:04

Extrempunkter

Har fått en definition som säger att:
"En punkt x=a är en lokal maximipunkt om f(a)f(x) för alla x i en omgivning av a" samt "En punkt x=a är en lokal minimipunkt om f(a)f(x) för alla x i en omgivning av a".

Men detta skulle ju betyda att en rät linje med lutningen noll har både maximi- och minimipunkter på hela sin definitionsmängd eftersom f(a)=f(x) för alla x? T.ex. g(x)=3.

Smaragdalena 80504 – Avstängd
Postad: 9 okt 2020 12:19

Ja, så är det. 

Svara
Close