13 svar
384 visningar
dilan22 behöver inte mer hjälp
dilan22 156
Postad: 1 feb 2020 19:12

Enhetscirkeln

Hej

Jag jobbar mycket med enhetscirkeln och vi använder pi istället för grader i beräkningar.

Det jag inte förstår är att när man skriver vinklar så skriver man (n2pi), (npi)  eller( npi/2) . Då jag inte lärde mig det i början så har jag nu svårt att lösa uppgifter. 

Jag vet att 1pi=180grader och n är heltal.

Men hur ska man vet hur många pi man ska skriva.

Ex

2cos^2v=1

v=Pi/4 +(pi n/2)

vad är det som (pi n/2) säger och varför just pi/2?

Smaragdalena 80504 – Avstängd
Postad: 1 feb 2020 19:26 Redigerad: 1 feb 2020 19:50

Du hoppar över för många steg i din beräkning!

2cos2v=1

cos2v=½

cosv=12\cos v=\frac{1}{\sqrt2} eller cosv=-12\cos v=-\frac{1}{\sqrt2}

Rita upp enhetscirkeln och rita in linjerna x=12x=\frac{1}{\sqrt2} och x=-12x=-\frac{1}{\sqrt2}

Kan du lägga upp bilden här när du har ritat den?

dilan22 156
Postad: 1 feb 2020 19:48

dilan22 156
Postad: 1 feb 2020 19:53

Nu när vi vet att vinklarna är 45grader alltså  pi/4

Vad är det som npi/2 säger oss? 

postitlapp 66
Postad: 1 feb 2020 20:07

Det man menar med (n*Pi)/4 är att man kan lägga på ett godtyckligt antal steg i storleksordning Pi/4 och få samma lösning.

Ta Cos(0) som ett enkelt exempel, Cos(0) = 1. Men det är ju inte bara för vinkel 0 som detta stämmer eller hur? Du kan snurra ett godtyckligt antal varv i storleksordningen n*2Pi och komma tillbaka till samma punkt på enhetscirkeln.

dilan22 156
Postad: 1 feb 2020 20:20
postitlapp skrev:

Det man menar med (n*Pi)/4 är att man kan lägga på ett godtyckligt antal steg i storleksordning Pi/4 och få samma lösning.

Ta Cos(0) som ett enkelt exempel, Cos(0) = 1. Men det är ju inte bara för vinkel 0 som detta stämmer eller hur? Du kan snurra ett godtyckligt antal varv i storleksordningen n*2Pi och komma tillbaka till samma punkt på enhetscirkeln

dilan22 156
Postad: 1 feb 2020 20:24 Redigerad: 1 feb 2020 20:26

Men hur kan min vinkel bli pin/2? Borde det inte vara n2pi bara. 

Jag ser inte någon vinkel npi/2 som ger samma värde. 

postitlapp 66
Postad: 1 feb 2020 20:29

n*2Pi kommer alltid ta dig tillbaka till samma punkt på enhetscirkeln, men det betyder ju inte att det är den enda lösningen eller hur? Både Pi/4 och (3Pi)/4 ger samma lösning, och det är Pi/2 mellan dem. Om du fortsätter lägga på Pi/2 så kommer du se att du får samma lösning även i den undre halvan av enhetscirkeln. Därför får du samtliga lösningar genom att lägga på ett godtyckligt antal Pi/2.

Smaragdalena 80504 – Avstängd
Postad: 1 feb 2020 20:39
dilan22 skrev:

Du har inte markerat ALLA lösningar i enhetscirkeln. Det finns lika många till.

dilan22 156
Postad: 1 feb 2020 21:03

Jahaa, så vi kommer alltså ha samma värde när det är pi/4. 3pi/4. 5pi/4 och 7pi/4? Alltså  för varje pi/2. 

dilan22 156
Postad: 1 feb 2020 21:23 Redigerad: 1 feb 2020 21:26

Så om vi dubbelkollar med ett annat värde

T. ex cosv=(+-sqr3/2)

Då har vi v=pi/6 +n3pi/2??

postitlapp 66
Postad: 1 feb 2020 22:18 Redigerad: 1 feb 2020 22:21

Nja, för det första finns det ingen vinkel som kan ge en lösning på cos(v) = ±32. Det gick i den ursprungliga uppgiften därför att cos(x) var kvadrerad och således försvann minustecknet för vänstra halvan, men här finns inget sådant. Men även om det bara var för att ha något att prata kring så blir det ändå inte helt rätt om du skulle lägga på 3Pi/2. I det här fallet skulle lösningen bli v = +/- Pi/6 + 2nPi (två "ursprungliga" lösningar alltså), eftersom vi alltid kan snurra ett helt varv (såvida det inte finns andra begränsningar).

Edit:

Dessa uppgifter kommer nog alltid i samband med en fin symmetri som i den första uppgiften.

Smaragdalena 80504 – Avstängd
Postad: 1 feb 2020 22:30

Så om vi dubbelkollar med ett annat värde

T. ex cosv=(+-sqr3/2)

Då har vi v=pi/6 +n3pi/2??

Sätt in värdena och kolla! Stämmer det?

dilan22 156
Postad: 4 feb 2020 17:18

Tror jag förstår nu. Tack! 

Svara
Close