Energianvändning
Hej!
Jag håller på med följande uppgift
“En rulltrappa i ett shoppingcentrum leder till andra planet. Tänk dig att du själv tar rulltrappan upp, medan din kompis tar trapporna. Gör du eller din kompis av med mest energi på förflyttningen till andra planet?”
Det jag är osäker på är om min beräkning stämmer? Jag vill ta reda på hur många sekunder “kompisen” behöver vara snabbare än, för att ha en energianvändning som är större än 4kw.
Min beräkning ser ut såhär
“Om kompisen som tog trapporna vägde 70kg, och trappornas längd var 8m, kan man beräkna kompisens tyngdkraft, arbete och den effekt kompisen som tar trapporna skulle behöva ha för att göra av med mer energi än 4kw.
Kompisens tyngdkraft beräknas med formeln för tyngdkraft.
70Kg∙9,82N/Kg=690N
Kompisens arbete beräknas med formeln för arbete.
690N/8m=5,5kNm
Tiden kompisen bör vara under, för att ha en lägre energianvändning än rulltrapporna, räknades ut genom att lösa ut tiden ur formeln för effekt.
Effekt=Energi/tiden=
=Effekt∙tiden=(Energi/tiden)∙tiden=
=Effekt∙tiden=Energi=
=(Effekt∙tiden)/Effekt=Energi/Effekt=
=Tiden=Energi/Effekt
Tiden sattes in som “x”, energi sattes in som “5.5kNm” och effekt sattes in som “4kw”.
x=5,5kNm/4kw
x=1.4⇒5,5kNm/4kw=1,4
Om kompisen springer uppför trapporna snabbare än 1,4 sekunder, skulle hen ha en större energiförbrukning än mig, om jag åkte till andra våningen på rulltrappan."
Varifrån kommer uppgiften 4 kW?
Det är är ifrån en källa där de säger att en rulltrappa kan dra mellan 4 och 90 kilowatt. Uppgiften ger inga mått, därför vill jag visa vad som är mest troligt genom att sätta in egna mått, det är mer för att förtydliga det svar jag tror är mest troligt.
Din jämförelse är aningen konstig och du tycks blanda ihop energi och effekt.
Den ursprungliga frågan var ju: ”Gör du eller din kompis av med mest energi på förflyttningen till andra planet?”
Den person som går gör av med energin E = m*g*h, där h är höjden mellan våningsplanen.
Personen på rulltrappan utför inget arbete. Rulltrappans energi E = P*t, där P är motorns effekt och t är tiden att åka mellan våningsplanen. 4 kW är gissningsvis en tomgångseffekt utan passagerare. 90 kW är väl maxeffekt med kanske 40 passagerare. Hur man skall göra jämförelsen är inte självklart.
Så för att avgöra energianvändningen som personen som går använder ska jag beräkna (70*9,82)*8?
Ja, juste 4kw är per sekund! Om det tar 60 sekunder för personen att gå upp för trapporna, ska jag alltså jämföra det med 4kw*60, inte 4kw?
Jag vill bevisa att även om rulltrappan går utan någon extra tyngd, skulle det vara orimligt att personen som går upp för trapporna gör av med mer energi än rulltrapporna. Om jag rättar det som var fel, är det jag vill bevisa tydligt?
Ja, du har helt rätt i att rulltrappan kan inte transportera upp med mindre energi än m*g*h joule per person.
Är m*g*h då energin det tar för personen som går upp för trapporna? alltså
(70*9,82)N=690N
(690*8)Nm=5,5kNm=5,5kw
Så om det tar 60 sekunder blir det
5,5kw*60=330kw
och det jämförs med
4kw*60=240kw
Men för att sedan lägga till den extra energianvändningen när en person åker rulltrappa, är det då massa*tyngdkraft+4kw*60? Det är ju lite konstigt eftersom jag inte vet hur lång trappan var som mätte 4kw.
Är det dumt att ens ta med detta som ett "bevis"? Borde jag istället skriva att frågan innehåller felkällor i form av saknad information? Jag skriver en labbrapport.
Jag måste fixa med lite andra saker nu. Tills vidare kolla på:
https://sv.wikipedia.org/wiki/Rulltrappa
https://www.idg.se/2.1085/1.258215/rulltrappor---sa-funkar-de
Tack så mycket för hjälpen!!
Jan Ragnar skrev:
Jag fattar inget men din handstil e så fint