Sputnik67 behöver inte mer hjälp
Sputnik67 404
Postad: 3 jul 2021 17:12

En integral

Jag fattar ju att man ska integrera v för att få ut förändringen i sträcka (s) och få ut den funktionen som står längst upp. Min fråga är då varför man då inte bara kan derivera v funktionen för att få ut sträckan?

 

Liksom vi har ju sträcka, hastighet och acceleration. För att få ut hastighet kan man antingen ta den primitiva funktionen av sträckan eller derivera accelerationen men här verkar allt bara bakvänt för mig. 

Är det bara jag?

Fermatrix 7841 – Fd. Medlem
Postad: 3 jul 2021 17:23

om du deriverar v(t)v(t) får du a(t)a(t). Det gäller att s'(t)=v(t)s'(t)=v(t) och att s''(t)=v'(t)=a(t)s''(t)=v'(t)=a(t). Du verkar blanda ihop det. Om du integrerar s(t)s(t) får du inte v(t)v(t).

Smaragdalena 80504 – Avstängd
Postad: 3 jul 2021 17:25

Om du deriverar hastigheten får du fram hur hastigheten ändras med tiden, d v s accelerationen.

Sputnik67 404
Postad: 3 jul 2021 17:28 Redigerad: 3 jul 2021 17:33

Aha, joo okej. Då förstår jag. Så allt var tvärtom istället?

Smaragdalena 80504 – Avstängd
Postad: 3 jul 2021 18:24

Om du har en acceleration och integrerar den en gång får du hastigheten (du får en konstant som är ursprungshastigheten). Om du har en acceleration och integrerar den två gånger får du hastigheten (du får en konstant till, som är ursprungssträckan). 

Svara
Close