26 svar
325 visningar
Abulfazl 213
Postad: 18 okt 2023 08:30 Redigerad: 18 okt 2023 08:38

En bil accelererar med konstant hastighet.

Hej, jag skulle behöva hjälp med en uppgift som lyder: 

En bil accelererar med konstant hastighet från stillastående upp till 55 km/h för att därefter omedelbart bromsa in med konstant acceleration till stillastående. 

Tiden från starten tills bilen åter stannat uppgår till 25 s. 

Den sträcka bilen då bilen kört är oberoende av hur länge hastighetsökningen pågick. Bevisa detta samt beräkna den tillryggladga sträckan. 

Jag förstår inte vad dem menar här. 

Yngve 40279 – Livehjälpare
Postad: 18 okt 2023 08:45 Redigerad: 18 okt 2023 08:46

Börja med att rita ett v/t-diagram som beskriver en möjlig bilhastighet vid olika tidpunkter.

Kalla tidpunkten då bilen börjar bromsa t1.

Försök att med hjälp av detta sätta upp ett uttryck för tillryggalagd sträcka.

Om du lyckas visa att detta uttryck iinte beror på t1 så är du klar med första delen.

Andra delen handlar om att bestämma uttryckets värde.

Abulfazl 213
Postad: 18 okt 2023 08:53

Jag är inte så bra på att rita grafer

Yngve 40279 – Livehjälpare
Postad: 18 okt 2023 10:35

Då är det läge att träna på det.

Rita ett koordinatsystem där du sätter av hastigheten v på den vertikala axeln och tiden t på dem horisontella axeln.

Accelerationen innebär en rät linje från origo upp till maxhastigheten vid tidpunkten t = t1.

Inbromsningen innebär en rät linje från avslutet på den första linjen ner till v = 0 vid t = 25 sekunder.

Tillryggalagd sträcka är lika med arean under denna geaf.

Men OK, du kan även lösa denna uppgift algebraiskt, med hjälp av formlerna för position och hastighet vid konstant acceleration.

Pieter Kuiper 8033 – Avstängd
Postad: 18 okt 2023 11:33
Abulfazl skrev:

 en uppgift som lyder: 

En bil accelererar med konstant hastighet från stillastående upp till 55 km/h

Det är förstås stort nonsens.

Yngve 40279 – Livehjälpare
Postad: 18 okt 2023 13:15

Det ska såklart stå "konstant acceleration".

Abulfazl 213
Postad: 24 okt 2023 10:59

Kommer man att använda sig utav formeln:

V = v+ at? 

Yngve 40279 – Livehjälpare
Postad: 24 okt 2023 11:08 Redigerad: 24 okt 2023 11:09

Ja, det kan du göra, tillsammans med formeln s(t) = s0+v0t+at2/2.

Tänk på att du har två förlopp: Ett accelererande och ett retarderande.

De båda förloppet har olika start- och sluthastigheter, olika start- och slutpositioner och olika accelerationer.

Det är enklare att göra en skiss och resonera baserat på den.

Abulfazl 213
Postad: 24 okt 2023 11:41 Redigerad: 24 okt 2023 12:15

Fick ekvationen till:

stotal =  552t + 552×(25-t)2t

Stämmer det?

Yngve 40279 – Livehjälpare
Postad: 24 okt 2023 12:22 Redigerad: 24 okt 2023 12:23

Nej, der stämmer inte. Berätta hur du använde formlerna för att komma fram till det så kan vi hjälpa dig att hitta feltänket.

(En grej är att du måste räkna om hastigheten till m/s.)

Abulfazl 213
Postad: 24 okt 2023 12:29

Jaha oj, glömde bort det:

55/3,6 = 15,28 m/s

Jag ville beräkna accelerationen (a) under hastighetsökningen

Yngve 40279 – Livehjälpare
Postad: 24 okt 2023 13:57

Du skrev stotal.

Då trodde jag att menade hela sträckan, från start till stopp.

Inför obekanta storheter som du kan använda i formlerna.

Förslag:

a1 för accelerationen under hastighetsökn8nhen.

s1 för positionen då hastighetsökningen övergår i hastighetsminskning.

t1 för den tidpunkt då detta inträffar.

a2 för.accelerationen under hastighetsminskningen.

s2 för positionen då hastigheten åter är 0.

t2 för den tidpunkt då detta inträffar.

Ställ nu upp formlerna med hjälp av detta.

Yngve 40279 – Livehjälpare
Postad: 24 okt 2023 16:46 Redigerad: 24 okt 2023 16:48

Ytterligare förslag:

Inför storheten vmax för maxhastigheten.

Använd denna beteckning så långt det går så slipper du använda siffror och närmevärden.

Om du absolut måste byta ut beteckningar mot värden ska du inte avrunda.

Abulfazl 213
Postad: 24 okt 2023 17:31

Alltså jag vet inte längre.

Yngve 40279 – Livehjälpare
Postad: 24 okt 2023 20:26

Vi tittar på bilens position vid t1:

Efrersom startpositionen är 0 och starthastigheten är 0 så kan vi få fram positionen vid t1 som s1 = 0+0•t1+a1t12/2, dvs s1 = a1t12/2.

Vi tittar på bilens position vid t2,:

Eftersom startpositionen är s1 och starthastigheten är vmax så kan vi få fram ppositionen vid t2 som s2 = s1+vmax•(t2-t1)+a2•(t2-t1)2/2.

Du kan nu uttrycka a1 och a2 med hjälp av vmax, t1 och t2..

Kommer du vidare då?

Abulfazl 213
Postad: 24 okt 2023 20:44 Redigerad: 24 okt 2023 20:44

Blir det:

a1 = 2s1/t2

a2 = 2/(t2 - t1)^2 * (s2 - s1 - vmax * (t- t1)? 

Yngve 40279 – Livehjälpare
Postad: 24 okt 2023 22:20 Redigerad: 24 okt 2023 23:01

Jag förstår inte riktigt vad du skriver.

Eftersom (medel)accelerationen a=ΔvΔta=\frac{\Delta v}{\Delta t} så får vi

a1=vmax-0t1-0=vmaxt1a_1=\frac{v_{max}-0}{t_1-0}=\frac{v_{max}}{t_1}

a2=0-vmaxt2-t1=-vmaxt2-t1a_2=\frac{0-v_{max}}{t_2-t_1}=-\frac{v_{max}}{t_2-t_1}

Abulfazl 213
Postad: 24 okt 2023 23:48

Sedan då?

Yngve 40279 – Livehjälpare
Postad: 25 okt 2023 07:24

Sen sätter du in uttrycken för a1 och a2 i uttrycket för s2 och förenklar.

Om du då ser att s2 endast beror på vmax och t2 så har du visat det som skulle visas.

Värdet av s2 kan sedan beräknas genom att sätta in de kända värdena för vmax och t2.

======

När du har gjort allt detta så kan jag visa dig hur du skulle kunna ha löst uppgiften betydligt enklare och snabbare med hjälp av ett v/t-diagram.

Abulfazl 213
Postad: 25 okt 2023 12:58

Så nu har jag skrivit ner det och gjort det. Skulle du kunna visa det nu?

Yngve 40279 – Livehjälpare
Postad: 25 okt 2023 15:43

Hur ser uttrycket du kom fram till ut och vad fick du för värde på den tillryggalagda sträckan?

Abulfazl 213
Postad: 25 okt 2023 15:46

Jag fick den tillryggalagda sträckan till 191 m. 

Yngve 40279 – Livehjälpare
Postad: 25 okt 2023 15:51

Ja, det stämmer.

Men hur ser ditt slutliga uttryck för s2 ut?

Det ger dig nämligen en bra ledtråd till hur problemet går att lösa på ett betydligt enklare sätt.

Abulfazl 213
Postad: 25 okt 2023 16:05

s= 55/3,6 × 25 /2 = 191 m

Yngve 40279 – Livehjälpare
Postad: 25 okt 2023 16:29 Redigerad: 25 okt 2023 16:29

Ja. Eller med symboler: s2=t2·vmax2s_2=\frac{t_2\cdot v_{max}}{2}.

Känner du igen den formen, dvs "(någonting gånger någonting annat) dividerat med två"?

Abulfazl 213
Postad: 25 okt 2023 21:45 Redigerad: 25 okt 2023 21:45

Ja, triangelns area eller? b×h2
Men nu vill jag gärna se hur man kunde lösa den med hjälp av ett v-t diagram tack :)

Yngve 40279 – Livehjälpare
Postad: 25 okt 2023 22:46 Redigerad: 26 okt 2023 00:34

Exakt så.

Följ mitt tips i svar #4.

Känner du igen formen på grafen?

Visa din skiss.

 

Svara
Close