Ekvationssystem som har en enda lösning
Hej!
Har testat allt men finner ingen lösning, skulle någon kunna hjälpa mig på traven. Facit säger a≠3
Tänk såhär, vi har två linjer, och , hur ska dessa linjer se ut för att ha oändligt med lösningar? Hur ska de se ut om det endast ska finnas en lösning?
Jag har gjort om ekvationerna till y=Kx+m men för mig tar det stopp eftersom jag har en tredje variabel alltså a. Jag får fram en lutning på båda ekvationerna 6/a X och -2x. Är detta rätt tänk?
Hej och välkommen till Pluggakuten!
Nästan. Om du skriver båda ekvationerna på formen så får du
(dvs )
och
(dvs )
Första linjen har alltså lutningen och den andra linjen har lutningen .
För att ekvationssystemet ska ha en enda lösning så måste det gälla att dessa två linjer skär varandra i en enda punkt, och det gör de om lutningarna är olika.
Du kan läsa mer om antal lösningar till linjära ekvationssystem i slutet av det här avsnittet.
Kommer du vidare då?
Du tar fram k-värdet för 4x -2y = 5 genom att göra om det till y = kx +m Då får du fram ett k-värde utan något x utan en konstant. Det som står före x i kx Då har du k1
Nu ska du ta fram ett förhållande med k1 och k2 så det bara finns en lösning d.v.s. de ska inte vara parallella utan korsa varandra d.v.s. vara vinkelräta för då finna bara en lösning.
Ta fram k2 och sen ta k1*k2 vad ska de vara om de ska vara vinkelräta. Så får du ut vad a ska vara.
Ursäkta det var fel de behöver inte korsa varandra utan bara inte vara parallella. Se Ynges lösning ovan.
Det finns tre fall,
Fall 1:
antingen har linjerna samma lutning och skär y-axeln på samma ställe och då i princip är samma linje, detta ger oändligt med lösningar.
Fall 2:
linjerna är parallela och skär aldrig varanda, detta ger att systemet saknar lösning.
Fall 3:
linjerna skär varandra en gång, detta ger en unik lösning.
Fall 1 kan vi direkt utesluta eftersom vi kan direkt se att m-värdet inte är densamma, det blir tydligare om du skriver det på formen , då återstår fall 1 och fall 2. Det betyder att du bara behöver hitta det värdet på parametern som uppfyller fall 2 eftersom när fall 2 ej är uppfyllt är alltid fall 3 uppfyllt. Vilket värde på parametern är linjerna parallela?
Linjerna måste inte nodvändigtvis vara vinkelräta för att det skall finnas en unik lösning, exempelvis, låt parametern , då fås en enda unik lösning men .
Tack för all hjälp!
Jag förstår dock inte vad nästa steg är i denna uträkning nu när jag har båda k värdera behöver jag räkna ut skärningspunkten men där kommer just a in och gör det krångligt för mig.
Du behöver bara hitta när linjerna är parallela, bestäm a så att dina linjer är parallela därför att när linjerna inte är parallela finns endast en unik lösning, se mitt svar ovan. Låt oss säga att linjerna är endast parallela då a=6, dåe har vi att för så har vi en unik lösning.