Ekvation | variabler och roten ur
För x > 0, lös ekvationen
Jag behöver hjälp med hur jag ska starta/komma vidare. Så här långt har jag kommit:
Jag tänker att man kan göra något med
?
Hmmm, detta var klurigt! Din omskrivning är smart, men det blir svårt att göra samma sak till högerledet. Jag skulle föreslå att du försöker förenkla genom att flytta omkring termerna i VL så mycket som möjligt:
Förenkla nu högerledet och se vad som händer! :)
Hur gick du från
?
mada59 skrev:Hur gick du från
?
Kvadrera båda leden.
Oj man kan göra det. Det hade jag ingen aning om. Vad gäller för villkor när man gör det?
Man får göra vad man vill bara man ser till att göra exakt samma sak på båda sidor - och tänk på att man kan införa falska rötter när man kvadrerar - om man kvadrerar blir ju (x-1) och (1-x) likadana.
Konstigt att du inte har träffat på det tidigare - man brukar ta upp det i Ma1 eller Ma2, t e x för att lösa ekvationen . Denna ekvation har bara en reell lösning.
Smaragdalena skrev:Man får göra vad man vill bara man ser till att göra exakt samma sak på båda sidor - och tänk på att man kan införa falska rötter när man kvadrerar - om man kvadrerar blir ju (x-1) och (1-x) likadana.
Konstigt att du inte har träffat på det tidigare - man brukar ta upp det i Ma1 eller Ma2, t e x för att lösa ekvationen . Denna ekvation har bara en reell lösning.
När vi ändå är ännu på det spåret. Om man kvaderar båda sidorna. Då finns det risk för falska rötter. Så är endast positiv (likamed absolut belopp) (men med risk för falsk rötter?) och men är lika med .
Smutstvätt skrev:Hmmm, detta var klurigt! Din omskrivning är smart, men det blir svårt att göra samma sak till högerledet. Jag skulle föreslå att du försöker förenkla genom att flytta omkring termerna i VL så mycket som möjligt:
Förenkla nu högerledet och se vad som händer! :)
Svaret är dock fel.
mada59 skrev:Smaragdalena skrev:Man får göra vad man vill bara man ser till att göra exakt samma sak på båda sidor - och tänk på att man kan införa falska rötter när man kvadrerar - om man kvadrerar blir ju (x-1) och (1-x) likadana.
Konstigt att du inte har träffat på det tidigare - man brukar ta upp det i Ma1 eller Ma2, t e x för att lösa ekvationen . Denna ekvation har bara en reell lösning.
När vi ändå är ännu på det spåret. Om man kvaderar båda sidorna. Då finns det risk för falska rötter. Så är endast positiv (likamed absolut belopp) (men med risk för falsk rötter?) och men är lika med .
Man måste alltid kolla sina rötter i den ursprungliga ekvationen, om man har kvadrerat på vägen.
Det har jag redan gjort, och lösningen (x=2) stämmer för mig när jag gör det.
Vad heter den regeln, och/eller vilka villkor gäller för den?
I allmänhet helt rätt! Svaret x = 2 är korrekt, men du missar en rot. I ditt inlägg precis ovanför detta har du kommit in på rätt spår. Huruvida den regeln har ett namn eller inte, vet jag inte, men den fundera på om den har några begränsningar eller tal för vilka likheten inte stämmer. Vad händer om a är mindre än noll? Vad händer om a är noll? Vad händer om a = 1? a > 1? :)
Jo jag har listat ut att a = 1 gör så att regeln inte fungerar. Men det måste finnas någon som redan sammanställt villkoren för det. Försökte googla mig till det, men hittade inget.
Man kan logaritmera så får man