14 svar
325 visningar
Linn behöver inte mer hjälp
Linn 77 – Fd. Medlem
Postad: 19 nov 2018 17:04

Ekvation med extrempunkter i allmän form

Hej! 

Detta är en A-uppgift som jag stirrat mig blind på. Jag har funktionen f(x)=ax^3+bx^2 där a=/0 och b =/0 (=/ betyder: inte lika med) och ska bestämma ekvationen för den räta linje man kan dra mellan två extrempunkter i det allmänna fallet, dvs för godtyckliga värden på a och b. 

Jag har kommit hit: 

 f(x)=ax^3+bx^2

f'(x)=3ax^2+2bx 

0= x(3ax+2b) 

X1= 0 

X2= (-2b)/(3ax)

Men sedan när jag sätter in X2 i funktionen f(x) så lyckas jag inte lösa ut nånting. Vad gör jag för fel? 

Yngve 40141 – Livehjälpare
Postad: 19 nov 2018 17:20
Linn skrev:

Hej! 

Detta är en A-uppgift som jag stirrat mig blind på. Jag har funktionen f(x)=ax^3+bx^2 där a=/0 och b =/0 (=/ betyder: inte lika med) och ska bestämma ekvationen för den räta linje man kan dra mellan två extrempunkter i det allmänna fallet, dvs för godtyckliga värden på a och b. 

Jag har kommit hit: 

 f(x)=ax^3+bx^2

f'(x)=3ax^2+2bx 

0= x(3ax+2b) 

X1= 0 

X2= (-2b)/(3ax)

Men sedan när jag sätter in X2 i funktionen f(x) så lyckas jag inte lösa ut nånting. Vad gör jag för fel? 

Ena nollstället x1=0x_1=0 är rätt.

Men det andra är fel. Du har att 3ax2+2b=03ax_2+2b=0, vilket ger att x2=-2b3a

Trinity 191 – Fd. Medlem
Postad: 19 nov 2018 17:26

Nollställen:

{x1,x2} = {0, -2 b/(3a)}

Punkt 1: (x1,f(x1))=(0, 0)

Punkt 2: (x2,f(x2))=(-2b/(3a), 4b^3/(27a^2))

Rät linje: y-f(x1)=(f(x2)-f(x1))/(x2-x1)(x-x1)

--> y = -2b^2x/(9a)

adamcl 28 – Fd. Medlem
Postad: 19 nov 2018 17:26

Du har nog beräknat X2 lite fel. Om du bryter ut x ur 3ax+2b får du en ekvation utan x som term, vilket du sedan kan stoppa in i f(x).

Linn 77 – Fd. Medlem
Postad: 19 nov 2018 17:28

Ja gud så klantigt, jag gjorde om uppgiften precis när jag skickat iväg meddelandet och fick då x=(-2b)/(3b)

Men sedan fastnar jag i f(x)=a(-2b/3a)^3 + b(-2b/3a)^2 

Kan jag förkorta bort så att f(x)=a(-2b/3a)+b? 

Trinity 191 – Fd. Medlem
Postad: 19 nov 2018 17:31
Linn skrev:

Ja gud så klantigt, jag gjorde om uppgiften precis när jag skickat iväg meddelandet och fick då x=(-2b)/(3b)

Men sedan fastnar jag i f(x)=a(-2b/3a)^3 + b(-2b/3a)^2 

Kan jag förkorta bort så att f(x)=a(-2b/3a)+b? 

Nej, inte förkorta, men beräkna. 

Yngve 40141 – Livehjälpare
Postad: 19 nov 2018 17:36
Linn skrev:

Ja gud så klantigt, jag gjorde om uppgiften precis när jag skickat iväg meddelandet och fick då x=(-2b)/(3b)

Men sedan fastnar jag i f(x)=a(-2b/3a)^3 + b(-2b/3a)^2 

Kan jag förkorta bort så att f(x)=a(-2b/3a)+b? 

 Ta en bit i taget.

(-2b3a)3=(-2b)3(3a)3=(\frac{-2b}{3a})^3=\frac{(-2b)^3}{(3a)^3}=

=(-2)3b333a3=-8b327a3=\frac{(-2)^3b^3}{3^3a^3}=\frac{-8b^3}{27a^3}

Alltså är a(-2b3a)3=a-8b327a3=-8b327a2

Kan du fortsätta själv nu?

Linn 77 – Fd. Medlem
Postad: 19 nov 2018 17:42

Jag fick fram att f(x)= (4ab^3)/27a^3

Och sen räknar jag ut k-värdet med hjälp av de 2 x-värdena:

Delta y: 0-((4ab^3)/27a^3)

Delta x: 0- (-2b/3a)

?

Yngve 40141 – Livehjälpare
Postad: 19 nov 2018 17:49 Redigerad: 19 nov 2018 17:50
Linn skrev:

Jag fick fram att f(x)= (4ab^3)/27a^3

Och sen räknar jag ut k-värdet med hjälp av de 2 x-värdena:

Delta y: 0-((4ab^3)/27a^3)

Delta x: 0- (-2b/3a)

?

Du kan förenkla till f(x2)=4b327a2f(x_2)=\frac{4b^3}{27a^2}.

Vad får du sedan för k-värde?

Linn 77 – Fd. Medlem
Postad: 19 nov 2018 20:02

Jag får k= (4b^2)/18^a

Sedan får jag funktionen: 

Y= (4b^2)/(18a)x + (8b^3)/(27a^2)

Är det rimligt? 

Trinity 191 – Fd. Medlem
Postad: 19 nov 2018 21:10

Nej, din linje går inte genom origo.

Yngve 40141 – Livehjälpare
Postad: 19 nov 2018 21:16
Linn skrev:

Jag får k= (4b^2)/18^a

Sedan får jag funktionen: 

Y= (4b^2)/(18a)x + (8b^3)/(27a^2)

Är det rimligt? 

Om du visar dina uträkningar så är det lättare för oss att hjälpa dig att hitta var det blir fel, och du kommer därmed att få snabbare hjälp.

Linn 77 – Fd. Medlem
Postad: 19 nov 2018 22:00

Jag sätter in mitt x-värde i funktionen f(x) = ax^3 + bx^2 :

f(-2b/3a) = a(-2b/3a)^3 + b(-2b/3a)^2

f(-2b/3a) = (-8ab^3/27a^3) + (4b^3(x3)/9a^2(x3)) <-- Här förlänger jag med 3a i både täljare o nämnare för att få MGN.

f(-2b/3a) = (-8ab^3 + 12ab^3)/27a^3 = (4b^3)/27a^2

Jag räknar ut k-värdet:

K = y-led: 0-(4b^3/27a^2)  / x-led:  0-(-2b/3a) = (4b^3)/18a^2

Jag räknar ut den räta linjens ekvation:

f(-2b/3a)  = ((4b^3)/(18a^2)) x (-2b/3a) +m

m = (4b^3)/(27a^2) - (-8b^4)/54a^3)

m = (4b^3)x2a/(27a^2)x2a - (-8b^4)/54a^3) <-- Jag förlänger med 2a för att få MGN

m = (8ab^3+8b^4)/ 54a^3

m = (4ab^3 + 4b^4)/ 27a^3

f(x) = ((4b^3)/18^2)x + ((4ab^3 + 4b^4)/ 27a^3)

Yngve 40141 – Livehjälpare
Postad: 19 nov 2018 23:36 Redigerad: 19 nov 2018 23:43
Linn skrev:

Jag sätter in mitt x-värde i funktionen f(x) = ax^3 + bx^2 :

f(-2b/3a) = a(-2b/3a)^3 + b(-2b/3a)^2

f(-2b/3a) = (-8ab^3/27a^3) + (4b^3(x3)/9a^2(x3)) <-- Här förlänger jag med 3a i både täljare o nämnare för att få MGN.

f(-2b/3a) = (-8ab^3 + 12ab^3)/27a^3 = (4b^3)/27a^2

Det är rätt fram hit.

Jag räknar ut k-värdet:

K = y-led: 0-(4b^3/27a^2)  / x-led:  0-(-2b/3a) = (4b^3)/18a^2

Det här stämmer inte.

k=0-4b327a20-(-2b3a)k=\frac{0-\frac{4b^3}{27a^2}}{0-(-\frac{2b}{3a})}

k=-4b327a22b3ak=\frac{-\frac{4b^3}{27a^2}}{\frac{2b}{3a}}

k=-4b327a2·3a2bk=-\frac{4b^3}{27a^2}\cdot\frac{3a}{2b}

k=-2b29ak=-\frac{2b^2}{9a}

Vad gäller m-värdet så behöver du inte beräkna det. Du vet att den räta linjen går genom origo ...

Linn 77 – Fd. Medlem
Postad: 20 nov 2018 06:39

Just det, skulle ha lyft blicken tidigare från uppgiften så hade jag inte stirrat mig så blind. Men tusen tack för tålamodet och hjälpen!

Svara
Close