13 svar
213 visningar
offan123 behöver inte mer hjälp
offan123 3072
Postad: 25 okt 2021 22:16 Redigerad: 25 okt 2021 22:17

Ej definierat, tan x

På a) behöver jag hjälp med. När det ej är definierat så får ej vara ex cos 90 grader, cos 270 grader, cos 450 osv (då det blir noll)

Tan 90= sin90/0 => e definierat 

Hur kan man tänka när det är uppställt så här med parantes?

Fermatrix 7841 – Fd. Medlem
Postad: 25 okt 2021 22:22 Redigerad: 25 okt 2021 22:22

Om u=x-π4u=x-\dfrac{\pi}{4}, får vi tan(u)=sin(u)/cos(u)

När cos(u)=0 är ff inte definierad. 

Kommer du vidare?

offan123 3072
Postad: 25 okt 2021 22:28 Redigerad: 25 okt 2021 22:44

Aha, så dum jag är, ser nu att det som är i parantesen ska vara lika med 90.

 

90= x-pi/4? Sen löser jag ut som vanligt?

 

offan123 3072
Postad: 25 okt 2021 22:56

Hur gör man på b) när det är en siffra framför tan?

Yngve 40279 – Livehjälpare
Postad: 25 okt 2021 22:59 Redigerad: 25 okt 2021 22:59
offan123 skrev:

90= x-pi/4? Sen löser jag ut som vanligt?

Nej du kan inte blanda vinklar angivna i grader och vinklar angivna i radianer på det sättet.

Använd därför pi/2 radianer istället för 90°.

Men tänk även på periodiciteten.

Yngve 40279 – Livehjälpare
Postad: 25 okt 2021 23:01
offan123 skrev:

Hur gör man på b) när det är en siffra framför tan?

Om tan(v) är definierad så är 3•tan(v) definierad.

Om tan(v) är odefinierad så är 3•tan(v) odefinierad.

offan123 3072
Postad: 25 okt 2021 23:17 Redigerad: 25 okt 2021 23:17
Yngve skrev:
offan123 skrev:

Hur gör man på b) när det är en siffra framför tan?

Om tan(v) är definierad så är 3•tan(v) definierad.

Om tan(v) är odefinierad så är 3•tan(v) odefinierad.

Förstår inte hur du menar med de två sista raderna.

 

Yngve 40279 – Livehjälpare
Postad: 26 okt 2021 07:20

Du frågade hur man gör pä b) när tangensuttrycket är multiplicerat med en faktor 3.

Det jag försökte beskriva var att 3•tan(2x-30°) är odefinierad på precis samma ställen som tan(2x-30°). 

Så för att lösa uppgiften räcker det med att du tar reda på vilka x-värden som gör uttrycket tan(2x-30°) odefinierat.

offan123 3072
Postad: 26 okt 2021 17:21

Jag får 30 grader men det ska bli 60 grader. Visst tar man allt i parantesen och sätter det lika med 90 grader?

Yngve 40279 – Livehjälpare
Postad: 26 okt 2021 17:57

Uttrycket tan(v) är odefinierat då v = 90°+n•180°.

Det betyder att uttrycket tan(2x-30°) är odefinierat då 2x-30° = 90°+n•180°.

Visa hur du räknar vidare därifrån.

offan123 3072
Postad: 26 okt 2021 18:16 Redigerad: 26 okt 2021 18:18

offan123 3072
Postad: 26 okt 2021 18:21

Aha, så man ska alltså:

Det inuti parantes för tan= 90grader+n*180       De är lika med varandra eftersom att både får inte bli noll?

Yngve 40279 – Livehjälpare
Postad: 26 okt 2021 18:27

Ja, det här är precis samma tänk som när du t.ex. löser ekvationen sin(2x+20°) = 0,5

Då får du ju att 2x+20° = 30°+n•360° och 2x+20° = 180°-30°+n•360°.

offan123 3072
Postad: 26 okt 2021 19:00

Tack 

Svara
Close