1 svar
247 visningar
heymel behöver inte mer hjälp
heymel 663
Postad: 24 nov 2017 09:49

Econometrics

Consider the following model: log(Yi) = a+Bx_i + e_i. 
If Y_i denotes wages and X_i denotes years of experience, what is the main assumption that allow you interpret OLS estimate of B as ceteris paribus returns to experience?

Men är så osäker... jag tänker att det är ngt i stil med: 

The necessary assumption for interpreting B as ceteris paribus effect is that the mean of the error term, e, given years of experience, X_i,  should be equal to zero. We can see that E[e|X]=E[e], so E[e]=0 have to happen in order to interpret B as ceteris paribus returns.

Albiki 5096 – Fd. Medlem
Postad: 24 nov 2017 18:03

Hi!

The model is

     logY(x)=a+Bx+e(x) \log Y(x) = a + Bx + e(x)

and consequently the logarithmic return is

    logY(x+1)Y(x)=B+e(x+1)-e(x). \log \frac{Y(x+1)}{Y(x)} = B + e(x+1) - e(x).

The expected log-return is therefore constant, equal to

    E(logY(x+1)Y(x))=B, \mathbf{E}(\log \frac{Y(x+1)}{Y(x)}) = B,

assuming that random variables e(x) e(x) have zero expected value for all years of experience ( x x ).

Albiki

Svara
Close