33 svar
127 visningar
plommonjuice87 behöver inte mer hjälp
plommonjuice87 768
Postad: 20 feb 2023 13:59

Dubbla vinkeln

Hej sitter här med en uppgift. Jag ska då lösa ekvationen som står högst upp.

jag vet inte om jag gjort rätt hittils så det får gärna dubbelcheckas men tror jag har gjort rätt. Men vet inte hur jag ska ta mig vidare här?

Calle_K 2322
Postad: 20 feb 2023 14:09 Redigerad: 20 feb 2023 14:09

Det är korrekt hittils. Vidare kan du addera och cos2x till varje led vilket ger dig den trigonometriska etta i VL. Därefter kan du stryka 1 i HL och VL samt skriva om allt till VL. Slutligen faktoriserar du ut termer och använder dig av nollproduktsmetoden för att bestämma lösningen

Mohammad Abdalla 1350
Postad: 20 feb 2023 14:14

Ett alternativ är att du skriver uttrycket i VL som 2sin(2x-π4), sen dela du båda leden med 2.

Ture 10435 – Livehjälpare
Postad: 20 feb 2023 14:15

Man kan också kvadrera bägge led, vilket enkelt leder fram till ett resultat

plommonjuice87 768
Postad: 20 feb 2023 14:26

Är det såhär ni menar? Att 1 + cos^2 x = sin^2 x. Tas allting annat bort från vänsterledet p.g.a trigettan.

 

hur tar man sedan sig vidare? Genom att ta roten ur på båda sidor?

Calle_K 2322
Postad: 20 feb 2023 14:33 Redigerad: 20 feb 2023 14:33

Du har fått lite olika förslag på lösningar, du kan testa alla och se vilken som du tycker är enklast.

Min lösning är att du adderar med cos2x igen på VL och HL för att få trigettan i VL (kom ihåg att trigettan är sin2x + cos2x = 1). Sedan stryker du 1 på båda sidor och därefter subtraherar med 2cos2x på båda sidor för att få 0 i HL. Slutligen faktoriserar du ut 2cosx och använder dig av nollproduktsmetoden, dvs cosx=0 eller sinx-cos=0

plommonjuice87 768
Postad: 20 feb 2023 14:52

Okej. Men om vi utgår från det jag skrev i förgående inlägg. 
för det första är allt det korrekt? Alltså att om man adderar cos^2 (x) på båda sidorna så blir det det som står längst ner i föregående inlägg? 


om vi då utgår därifrån om jag har rätt så blir det väl 1 + 2cos^2 (x) = 1 ?

gör jag rätt änsålänge?

Calle_K 2322
Postad: 20 feb 2023 14:56 Redigerad: 20 feb 2023 14:56

1+cos2x är inte sin2x

Däremot är cos2x+sin2x=1 (trigettan) vilket medför att 1+cos2x = 2-sin2x

plommonjuice87 768
Postad: 21 feb 2023 10:28 Redigerad: 21 feb 2023 10:29

Aha så nu har jag 1 + cos^2 (x) = 2 - sin^2 (x) 

 

vad är nästa steg här? Att få cos och sin på en sida och konstanterna på en annan?

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 10:33

Du har nog gjort något konstigt på vägen,

Om du adderar sin2(x) på bägge sidor får du efter förenkling (trig ettan)

1+1 = 2, vilket i och för sig är sant, men säger inget om värdet på x...

plommonjuice87 768
Postad: 21 feb 2023 10:39

Jag mest tänkte på vad Calle sa. Såhär ser allting ut. Har jag gjort något fel på vägen?

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 13:10

Du har fått

2sin(x)cos(x)+sin2(x) = 1+cos2(x)

om du nu gör som CAlle_K förslår, dvs addera cos^2 på bägge sidor får du 

2sin(x)cos(x)+sin2(x) +cos2(x) = 1+2cos2(x)  

som förenklat blir

2sin(x)cos(x)+1 = 1+2cos2(x)

och efter ytterligare förenkling

sin(x)cos(x)-cos2(x)  = 0

kan du fortsätta härifrån?

plommonjuice87 768
Postad: 21 feb 2023 13:48

Aha okej

såhär om jag förstår det rätt? 


men saken är att jag inte riktigt förstår hur jag ska få fram x utifrån detta. Har svårt för det känns det dom. För vi har ju inga konstanter utan bara massa sinus å cosinus. Hur går jag till väga? 

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 13:52

Ja, det var så jag skrev, hur går du vidare härifrån?

plommonjuice87 768
Postad: 21 feb 2023 14:23

Ja nej men det är de jag menade men jag förstår ej hur man ska få reda på x härifrån? Jag kommer väl ingenstans utan att ha konstanter eller?

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 14:26

jodå, det går att lösa men du måste skriva om lite till

Bryt ut cos(x) i vänsterledet, sen kan du använda nollproduktmetoden för att komma vidare

plommonjuice87 768
Postad: 21 feb 2023 14:44

Så jag ska dividera med cos x på båda sidorna för att få sin x - cos^2 (x) = 0 ? 

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 14:48

Nej, du ska bryta ut cos. 

Ungefär som

Ab+bc blir

b(A+c) när du bryter ut b. 

plommonjuice87 768
Postad: 21 feb 2023 15:28

Aha oj ja. 

cos x (sin x - cos x ) = 0 

Detta känns väl rätt. Eller har jag missat en cos? 

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 15:31

Japp, böra att lösa vidare!

plommonjuice87 768
Postad: 21 feb 2023 15:51

Om cos x = 0 så är väl x = 100 grader 

men hur gör jag med sin x - cos x ?

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 15:57

Nu får du repetera standardvinklar,

cos(x) = 0 gäller inte för x = 100 grader, utan 90 grader, dessutom ska du ha med periodiciteten!

I matte 4 har vi lämnat grader och använder oss som standard av radianer istället.

sin(x)-cos(x) = 0

Som sagt var, kolla på standardvinklar eller titta i enhetscirkeln.

plommonjuice87 768
Postad: 21 feb 2023 16:19

Väldigt mycket jag inte förstår där tyvärr. Så cos 0 = 90 grader. Alltså pi / 2. Är det dä du menar. 

sen sin(x) - cos (x) = 0 och hur jag ska se det i standard vinklar eller enhetscirkeln förstår jag inte alls. 

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 16:23

Tvärtom

Cos(90)=0

Sin-cos =0 

Samma som sin(x) = cos(x) 

plommonjuice87 768
Postad: 21 feb 2023 17:56

Aha ja självklart. Så 

x1 = 90 grader  eller ska man kanske skriva 90 + N * 360 

 

sen x2 då med sin x = cos x. Vid vilket x värde gäller det? 

Ture 10435 – Livehjälpare
Postad: 21 feb 2023 18:02

Som jag sa, titra i enhetscirkeln eller i din formelsamling

plommonjuice87 768
Postad: 22 feb 2023 10:37

Tror jag har listat ut det nu. Att sin x = cos x vid 45 grader. 
men även vid 225 grader då båda blir negativt där. 

Då har jag 

x1 = 90 

x2 = 45 

x3 = 225 

 

Man ska ju bara lösa ekvationen. Ska man verkligen har så många x - värden?

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2023 11:36
plommonjuice87 skrev:

Tror jag har listat ut det nu. Att sin x = cos x vid 45 grader. 
men även vid 225 grader då båda blir negativt där. 

Då har jag 

x1 = 90 

x2 = 45 

x3 = 225 

 

Man ska ju bara lösa ekvationen. Ska man verkligen har så många x - värden?

Du skall ha många fler!

plommonjuice87 768
Postad: 22 feb 2023 11:37

Är det fler x-värden då eller är det att man tar t.ex  45 + N * 360 osv? 

plommonjuice87 768
Postad: 22 feb 2023 11:44

Eller ska man kanske ta 180 grader på alla eftersom det är sin 2x och cos 2x i första frågan? 

då har jag tekniskt sätt alla värden på 

90 + n * 180 

45 + n * 180 

 

Dock blir 90 + 180 = 270 och sin 270 - cos 270 är inte = 1 

Calle_K 2322
Postad: 22 feb 2023 12:21

Dock är cos(270)=0, så ekvationen stämmer likaväl :)


Tillägg: 22 feb 2023 12:23

Du ska ha 2x i din första ekvation, eftersom x=135 inte är någon lösning kan du inte stoppa in 270 i ekvationen. Däremot är x=270 en (av många) lösningar och därmed kan du se att ekvationen stämmer för 2*270=540

Ture 10435 – Livehjälpare
Postad: 22 feb 2023 13:01

när man löser trig ekvationer är det klokt att ta med samtliga lösningar från början, för att sen se om det går att komprimera, Nästan alla trig ekv av typen sin(x) eller cos (x) = a har två lösningsmängder,  (om a = 1 eller -1 finns det bara en lösningsmängd) !

Du hade

cos x (sin x - cos x ) = 0 

Antingen är cos(x) = 0 vilket gäller för

x1 = 90 +n*360
x2 = 270 +n*360

eller så är parentesen = 0 vilket gäller för

x3 = 45 + n*360
x4 = 225 + n*360

Nästa steg är att plotta in sina lösningar i enhetscirkeln, för att se om det går att förenkla, då ser man (?) att

x1 och x2 går att slå ihop till 90 + n*180

samt att

x3 och x4 går att bunta ihop till 45 + n*180

Till sist så kontrollerar man i sin ursprungsekvation om dessa lösningar stämmer!

plommonjuice87 768
Postad: 22 feb 2023 15:45

Ja precis. Då förstår jag tack! 
när jag kollade så fungerade alla lösningen för x i ursprungsekvationen. Förutom x2 som är 270 

det funkar för cos (270) = 0 men i ursprungsekvationen så är sin 270 = -1 

så det blir -1 - 0 vilket inte är 1 då. 

Så borde inte 90 + n * 180 inte var en korrekt lösning utan bara 90 + n * 360? 

plommonjuice87 768
Postad: 22 feb 2023 15:51

Glömde att jag skulle ta sin 2x och inte sin x 😮. 

Sin 2x - cos 2x är = 1 om x är 270 grader

 

så slutgiltiliga svaret blir ju helt enkelt 

90 + n * 180 

och 

45 + n * 180 

Svara
Close