Dimension för nollrummet av transponat
Hej, behöver hjälp med att beräkna nollrummet till transponatet av en matris A.
A= 1 2 1 2
1 2 0 1
0 0 1 1
Jag har lyckats få fram dimensionen av nolldummet, N(A), vilket är antalet "fria" variabler i As radkanoniska matris
R= 1 2 0 1
0 0 1 1
0 0 0 0
Alltså blir Dim N(A)=2, men hur får jag fram Dim N(AT)?
Försöker bara att beräkna fram ATs radkanoniska matris på räknaren men det går inte (får bara fram error). Finns det något samband mellan Dim N(A) och Dim N(AT) som jag ska använda mig av istället?
(Vi ska använda oss av räknare så behöver inte beräkna radkanonisk form osv för hand, och jag vet hur man får fram AT)
Med AT antar jag att du menar As transponat, dvs
För en godtycklig mxn matris A gäller att kolonnrangen och radrangen är lika. Det gemensamma värdet på radrang och kolonnrang kallas matrisens rang och är antalet linjärt oberoende kolonner (eller om man så vill rader) i A. Rangen för A kan också beskrivas som antalet pivotelement efter fullbordad Gauss-elimination vid lösandet av ekvationen .
Du har kommit fram till att
När vi transponerar matrisen A, som från början är 3x4, kommer vi få en matris 4x3. Dimensionssatsen säger
Alltså måste
Det går förövrigt alldeles utmärkt att reducera även , man erhåller då
Okej, tack så jättemycket för hjälpen! :)