2
svar
73
visningar
Differentialekvationer: wronskian
Hej, se:
Men jag blir inte helt övertygad. Påstår boken följande?:
Vi har två (lin. ob.) lösningar till diffekvationen utan initaialvillkor, och vilken linjärkomb som helst av dessa löser också diffekvationen. Om vi sedan har initialvärden för y och y' så kan det plötsligt bli så att ingen linjärkombination av dessa två lösningar kan lösa diffekvationen??????
Vad regeln säger är att om determinanten är skilt från 0 finns en exakt lösning. Om determinanten är = 0, så finns antingen ingen lösning eller så finns det oändligt många lösningar.