7 svar
167 visningar
JuliaH behöver inte mer hjälp
JuliaH 8 – Fd. Medlem
Postad: 17 jan 2021 16:14 Redigerad: 17 jan 2021 17:37

Differentialekvation med y i nämnaren

2. Betrakta differentialekvationen
𝑦′ − 4xy = 4

a) Vilken lutning har en lösningskurva till differentialekvationen i punkten (3,-6)?
Här har jag fått svaret y' = 2

b) Bestäm 𝑦(2) då y(0)= 4.

Här är jag osäker på vad de vill att jag ska göra. Har tänkt att jag kan använda Eulers stegmetod, alltså:
yn+1= yn+ h * yn'

Med insättning ger det mig:

yn+1=4+2*4 = 12

Kan detta stämma? Eller bör jag använda någon annan metod?

Smutstvätt 25093 – Moderator
Postad: 17 jan 2021 19:09

Ja, det kan du göra. Däremot är det nog rimligt att använda en kortare steglängd, exempelvis h = 0,5 eller h = 1. :)

JuliaH 8 – Fd. Medlem
Postad: 17 jan 2021 20:03 Redigerad: 17 jan 2021 20:04

Jag tänker att h= x1-xoch eftersom de x jag har i detta fallet är x1=2 och x0=0 så får jag h=2-0=2. Eller tänker jag tokigt där?

Smutstvätt 25093 – Moderator
Postad: 17 jan 2021 21:34

Nejdå, du tänker rätt, men du kan variera steglängden. Om du sätter h=x1-x24, kan du beräkna y(0,5)y(0,5). Därefter kan du beräkna y(1)y(1), med hjälp av resultatet från y(0,5)y(0,5). Fortsätt så, fram tills du kommer till y(2)y(2). Kortare steglängd ger en bättre uppskattning. :)

JuliaH 8 – Fd. Medlem
Postad: 17 jan 2021 22:14

Tack för svar! Hänger med på principen men varför tar du dividerat med 4 på x1-x2? :)

Smutstvätt 25093 – Moderator
Postad: 17 jan 2021 22:24

För att få steglängden 0,5. Vi kan dividera med något annat tal också, för att få en annan steglängd. :)

JuliaH 8 – Fd. Medlem
Postad: 18 jan 2021 00:33

Om jag har förstått det rätt så får jag om jag räknar med steglängden 1 svaret y(2)=12,5 och med steglängden 0,5 får jag y(2)=12,7. I varje steg i uträkningen så har h = 1 respektive 0.5, har jag tänkt rätt då?

Smutstvätt 25093 – Moderator
Postad: 18 jan 2021 11:56

Det ser bra ut! :)

Svara
Close