52 svar
199 visningar
Katarina149 behöver inte mer hjälp
Katarina149 7151
Postad: 10 dec 2021 01:26

Derivera mha kedjeregeln

Det ska stå h(x)=2cos3 (4x) 

Bestäm h’(x) . 

Jag tänkte så här : 

Derivatan av yttre funktionen är 3*2cos2(4x) 

= 6cos2(4x) 

Derivatan av inre funktionen är 

Alltså är h’(x)=6cos2(4x) • 4 = 24cos2(4x) 

Är det rätt?

Yngve 40279 – Livehjälpare
Postad: 10 dec 2021 07:55 Redigerad: 10 dec 2021 08:05

Nej, det här är tre ryska dockor.

  • Den yttersta dockan är "någonting upphöjt till 3".
  • Den mellersta dockan är "cosinus av någonting".
  • Den innersta dockan är "4x".

Så du måste använda kedjeregeln två gånger.

Katarina149 7151
Postad: 10 dec 2021 12:19

Hur ska man kunna se att det ska vara tre ”ryska dockor”? Dvs att man ska använda kedjeregeln två gånger? 

Katarina149 7151
Postad: 10 dec 2021 12:22

Då blir det 

Yttersta funktionen : 6cos2(4x) 

Mellersta funktionen : cos(4x) -> deriverar -sin(4x) 

innersta funktionens derivata blir 4 

6cos2(4x) * (-sin(4x))*4= -24cos2(4x)*sin(4x)) 

Men jag hänger inte med på hur jag ska kunna se att det är tre funktioner som ska deriverars

Soderstrom 2768
Postad: 10 dec 2021 13:28 Redigerad: 10 dec 2021 13:31

ddx[2cos3(4x)]=2·ddx[cos3(4x)]=2·3cos2(4x)ddx[cos(4x)]=...\displaystyle \frac{d}{dx} [2cos^3(4x)]=2 \cdot \frac{d}{dx} [cos^3(4x)]= 2 \cdot 3 cos^2(4x) \frac{d}{dx} [cos(4x)]=...

Programmeraren 3390
Postad: 10 dec 2021 14:56 Redigerad: 10 dec 2021 14:57

Du kan se det genom att fråga dig "Vad har jag enkla deriveringsregler för?"

Hela uttrycket: h(x)=2(cos(4x) )^3

Steg för steg:
Konstanten 2 kan stå kvar eftersom den inte påverkar
Upphöjt i 3 har vi enkel regel för
cos(x) har vi enkel regel för
4x har vi enkel regel för

Om du dessutom alltid skriver det du har som "ryska dockor", dvs funktioner i varandra, så blir det rätt:
Innerst har vi c(x)=4x
Runt den sitter b(x)=cos(x).  Vi kontrollerar: b(c(x))=cos(4x)
Runt den sitter a(x)=x^3.  Vi kontrollerar:  a(b(c)))=(cos(4x))^3
h(x)=2*a(b(c(x)))

Katarina149 7151
Postad: 10 dec 2021 19:49 Redigerad: 10 dec 2021 19:51
Yngve skrev:

Nej, det här är tre ryska dockor.

  • Den yttersta dockan är "någonting upphöjt till 3".
  • Den mellersta dockan är "cosinus av någonting".
  • Den innersta dockan är "4x".

Så du måste använda kedjeregeln två gånger.

Kan du förklara hur du ser att det är tre ryska dockor? Jag hänger inte med på din förklaring 

Derivatan ska bli 

Men jag förstår inte hur man ska kunna se när det är ”två ryska dockor” , när det är ”tre ryska dockor” , osv.. Kan du förklara med hjälp av olika exempel hur man ska tänka?

Katarina149 7151
Postad: 10 dec 2021 20:25

Jaha nu blev det tydligare. När jag skrev om h(x) till 

(2cos(4x))^3 ..

Yngve 40279 – Livehjälpare
Postad: 10 dec 2021 20:30

Din uträkning i #7 är rätt,men I #8 är den fel.

Där skriver du (2•cos(4x))33men det ska vara 2•(cos(4x))3.

När du sedan deriverar så missar du att andra faktorn ska vara kvadrerad.

Katarina149 7151
Postad: 10 dec 2021 20:34 Redigerad: 10 dec 2021 20:34

Du menar så här väl?

Programmeraren 3390
Postad: 10 dec 2021 20:48 Redigerad: 10 dec 2021 20:55

Det är delvis samma fel som i #8. Se #9.

Katarina149 7151
Postad: 10 dec 2021 20:53 Redigerad: 10 dec 2021 20:53

Är det här rätt?

Yngve 40279 – Livehjälpare
Postad: 10 dec 2021 21:07 Redigerad: 10 dec 2021 21:08

Ja, det är rätt.

Som jag skrev tidigare, din uträkning i kommentar #7 var rätt.

Katarina149 7151
Postad: 10 dec 2021 21:16 Redigerad: 10 dec 2021 21:22

Felet jag gjorde var att jag inte satte parentesen runt cos(4x) . Nu förstår jag mitt fel. Kan jag få en liknande fråga som jag ska derivera så att jag kan veta att jag har förstått till 100%. Ju fler frågor man över desto bättre blir man 

Yngve 40279 – Livehjälpare
Postad: 10 dec 2021 21:37 Redigerad: 10 dec 2021 21:37

Nej det var inte bara det. Du glömde även kvadraten av den andra faktorn.

Liknande uppgift:

f(x)=1sin(e(x2))f(x)=\frac{1}{sin(e^{(x^2)})}

Katarina149 7151
Postad: 10 dec 2021 21:40 Redigerad: 10 dec 2021 21:49

Lösning till ”liknande uppgift”.  Är det rätt?

Programmeraren 3390
Postad: 10 dec 2021 21:52

Det var 4 funktioner den här gången. De tre första faktorerna är rätt men du glömde inre derivatan till sista, dvs 2x

Katarina149 7151
Postad: 10 dec 2021 21:53 Redigerad: 10 dec 2021 21:54

Jaha så om det hade stått e^x så hade derivatan blivit e^x , men nu har vi e^(x^2) så därför kommer det att bli 

e^(x^2) * 2x 

*2x ska också vara med. Ok nu såg jag det. 

Programmeraren 3390
Postad: 10 dec 2021 21:58

f(x)=sin(e3x)

Katarina149 7151
Postad: 10 dec 2021 22:01
Yngve skrev:

Nej det var inte bara det. Du glömde även kvadraten av den andra faktorn.

Liknande uppgift:

f(x)=1sin(e(x2))f(x)=\frac{1}{sin(e^{(x^2)})}

Visst är det här den rätta lösningen av yngves uppgift?

Programmeraren 3390
Postad: 10 dec 2021 22:02

Ja

Katarina149 7151
Postad: 10 dec 2021 22:06

programmeraren den här lösningen får jag på din uppgift 

Programmeraren 3390
Postad: 10 dec 2021 22:09

Ett fel, ser ut som en extra 3:a innan e^(3x)

(Ser att den går att förenkla innan derivering men det spelar ingen roll)

Katarina149 7151
Postad: 10 dec 2021 22:10 Redigerad: 10 dec 2021 22:12

Men det står i formelsamlingen att derivatan av e^kx är k*e^kx så då tänkte jag på samma sätt när jag deriverade e^3x , k är 3 ..

Programmeraren 3390
Postad: 10 dec 2021 22:16 Redigerad: 10 dec 2021 22:17

Ja men då tar du med allt och det blir ingen "*3" på slutet också, då har du ju deriverat klart. Den regeln är egentligen kedjeregeln eller hur?

f(g(x))=e^(3x)

f'(g(x)) * f'(x) = e^(3x) * 3

Så exemplet blev inte jättebra men visade sig vara bra eftersom det dök upp nåt att tänka på :-)

 

Katarina149 7151
Postad: 10 dec 2021 22:17

Men vaah? Man ska ju derivera e^3x .. Derivatan blir 3*e^3x 

Varför är det fel?

Programmeraren 3390
Postad: 10 dec 2021 22:18 Redigerad: 10 dec 2021 22:18

Titta på #25. Regeln du kan utantill för e^(kx) är samma som kedjeregeln

Katarina149 7151
Postad: 10 dec 2021 22:19

Du menar att när jag deriverar 3x så får jag automatiskt trean med så därför ska jag behålla e^3x när jag deriverar e^3x

Programmeraren 3390
Postad: 10 dec 2021 22:22

Ja. Eller använda regeln du kan för e^(kx) och sen INTE ta inre derivatan eftersom du är klar.

Du frågade i #4 och jag svarade i #6 hur du ska tänka för att veta om det är inre funktion eller inte:
"Men jag hänger inte med på hur jag ska kunna se att det är tre funktioner som ska deriverars"
''Du kan se det genom att fråga dig "Vad har jag enkla deriveringsregler för?"''

Katarina149 7151
Postad: 10 dec 2021 22:26 Redigerad: 10 dec 2021 22:27

Kan du skriva flera liknande frågor så kan jag testa lösa de. För nu inser jag att jag inte är 100% med på hur man löser sån här frågor. Så jag kommer behöva lösa minst 4 uppgifter för att känna att jag har förstått hur man deriverar till 100% . Jag vill jätte gärna träna tills jag kan lösa alla sorters frågor 

Programmeraren 3390
Postad: 10 dec 2021 22:31

Gör så här:

Hitta på något med 3 funktioner i varandra. T ex
sin(2cos(e^(2x+1)))
(sin(e^4x))^3
sin(sqrt(x^4-1))

Sen kollar du att du gjort rätt med geogebra (om funktion är f(x) skriver du bara f') eller på nån web-sida typ https://www.derivative-calculator.net

Katarina149 7151
Postad: 10 dec 2021 23:25 Redigerad: 10 dec 2021 23:35

Är derivatan av ”sin(2cos(e^(2x+1)))” rätt

==== 

Är derivatan av (sin(e^4x))^3 rätt

=== 

Är derivatan av sin(sqrt(x^4-1)) 

Yngve 40279 – Livehjälpare
Postad: 10 dec 2021 23:31 Redigerad: 10 dec 2021 23:32
Katarina149 skrev:

Är derivatan av ”sin(2cos(e^(2x+1)))” rätt

Nej, du glömmer derivatan av den innersta ryska dockan 2x+1. Denna inre derivata är lika med 2.

==== 

Är derivatan av (sin(e^4x))^3 rätt

Samma här, du glömmer derivatan av den innersta ryska dockan 4x. Denna derivata är 4.

Katarina149 7151
Postad: 10 dec 2021 23:37 Redigerad: 10 dec 2021 23:39

Ska det vara så här?

Här lägger jag bara till *4

Yngve 40279 – Livehjälpare
Postad: 10 dec 2021 23:49

Har du kollat med Geogebra eller sajten som Programmeraren tipsade om i #31?

Katarina149 7151
Postad: 10 dec 2021 23:50 Redigerad: 10 dec 2021 23:51

Nej för jag föredrar att inte använda mig av digitala verktyg. För sånt får man inte ha på prov. Men har jag gjort rätt ovan?

Katarina149 7151
Postad: 10 dec 2021 23:59
Yngve skrev:

Har du kollat med Geogebra eller sajten som Programmeraren tipsade om i #31?

Kan du skriva ytterligare (4 exempel) som jag får öva mig på? Dvs liknande uppgifter? Vill träna tills allt sitter 100%

Yngve 40279 – Livehjälpare
Postad: 11 dec 2021 00:10
Katarina149 skrev:

Nej för jag föredrar att inte använda mig av digitala verktyg. För sånt får man inte ha på prov. Men har jag gjort rätt ovan?

Det här förstår jag inte. Varför ber du då Pluggakuten att kontrollera? Du får ju inte ha med Pluggakuten heller på proven.

Katarina149 7151
Postad: 11 dec 2021 00:18 Redigerad: 11 dec 2021 00:19

Jag förstår inte hur jag ska kontrollera svaret ifall jag har deriverat rätt 

Yngve 40279 – Livehjälpare
Postad: 11 dec 2021 00:22

Vet inte, jag är inte så bra på Geogebra.

Men har du prövat länken som Programmeraren gav dig?

Katarina149 7151
Postad: 11 dec 2021 00:28 Redigerad: 11 dec 2021 00:30

Jag har testat med programmerarens länk… Detta fick jag fram av länken  . Det här svaret fick jag av min uträkning 

Yngve 40279 – Livehjälpare
Postad: 11 dec 2021 00:34

Det du skrivit in som f(x) stämmer inte.

Kontrollera exponenten.

Katarina149 7151
Postad: 11 dec 2021 00:38 Redigerad: 11 dec 2021 00:39

okej nu ser jag att mitt svar stämmer . Du har rätt exponenten hade jag skrivit in fel. Det ska vara parentes runt (2x+1).

 

Har du möjlighet att skriva flera ”frågor som jag får öva på” . Den här gången kan jag själv kontrollera mitt svar mha länken som programmeraren länkade. 

Yngve 40279 – Livehjälpare
Postad: 11 dec 2021 00:44

Bra.

Du har en funktion kvar av Programmerarens förslag i kommentar #31.

Sen kan du kan hitta på egna funktionsuttryck, derivera och testa med hjälp av den onlinetestaren.

Katarina149 7151
Postad: 11 dec 2021 00:45

Hur hittar man på egna funktioner?

Yngve 40279 – Livehjälpare
Postad: 11 dec 2021 00:49

Det är bara att pröva sig fram. Blanda potensuttryck, trigonomwtriska funktioner och linjära uttryck. Kanske en logaritmfunktion?

Katarina149 7151
Postad: 11 dec 2021 00:52 Redigerad: 11 dec 2021 00:53

Är det vanligt att logaritm funktioner dyker upp i sån här typer av frågor där man ska derivera?

Jag kommer inte på ”svåra” ekvationer som jag kan derivera.. Jag kommer bara på enkla funktioner. Kan du ge en sista exempel på en fråga. Och det får isf verkligen vara det sista exempel i den här tråden 

Soderstrom 2768
Postad: 11 dec 2021 00:59 Redigerad: 11 dec 2021 01:00

f(x)=sin2(cos(ln(x3)+e1x))\displaystyle f(x)=sin^2(cos(ln(x^3)+e^{\sqrt{\frac{1}{x}}}))

Katarina149 7151
Postad: 11 dec 2021 01:02

Den här var svår att lösa, vi jobbar inte med ln i ma4 i just det kapitlet som vi nu arbetar med 

Yngve 40279 – Livehjälpare
Postad: 11 dec 2021 01:04

Ja, den var svår. Men du hittar derivatan av ln(x) i ditt formelblad.

Katarina149 7151
Postad: 11 dec 2021 01:07 Redigerad: 11 dec 2021 01:08

Yngve jag vet inte hur man löser den här frågan och jag tror inte heller att ngt sånt kommer på provet.. Det är högre än ma4 nivån .. @söderström gärna om du istället skriver en lite enklare funktion för den du skrev kan jag faktiskt inte lösa.. :( (eller den är svårare och den kräver mer kunskaper än de jag besitter)

Soderstrom 2768
Postad: 11 dec 2021 01:10 Redigerad: 11 dec 2021 01:10

g(x)=sin2(cos(e-x2))g(x)=sin^2(cos(e^{-x^2}))

Katarina149 7151
Postad: 11 dec 2021 01:15 Redigerad: 11 dec 2021 01:21

Svaret är rätt. Jag dubbelkolla mha länken som programmeraren länkade 

Svara
Close