Derivera h(x) m.h.a produktregeln och kedjeregeln. Sedan bör du ganska enkelt kunna bestämma derivatan vid x=2
Jag förstår inte hur ska jag derivera h(x)
ahmad_990 skrev:Jag förstår inte hur ska jag derivera h(x)
Du ska derivera xf(x2). Derivatan av f kallar vi f', du behöver inte veta exakt hur den ser ut. Testa hur långt du kommer.
Om problemet ser invecklat och komplicerat ut så kan det ofta vara bra att införa beteckningar och förenklingar så att strukturen framgår på ett tydligare sätt.
Förslag:
Vi ser att h(x) är en produkt av två faktorer, som var och en är beroende av x.
Vi kan kalla dem A(x) och B(x) här, så att A(x) = x och B(x) = f(x^2).
Då har vi alltså att h(x) = A(x)*B(x).
Nu framgår strukturen att h'(x) är derivatan av en produkt.
Produktregeln för derivering säger då att derivatan av h(x) är h'(x) = A(x)*B'(x) + A'(x)*B(x).
Nästa steg blir att komma på vad A'(x) och B'(x) är, sedan kan du sätta ihop uttryclet för h'(x).
A'(x) är lätt eftersom A(x) = x.
Men B(x) = f(x^2), vilket gör att det blir lite knepigare att ta fram B'(x).
Men här framgår strukturen att B(x) är en sammansatt funktion f(u), där u = x^2.
När du ska ta fram ett uttryck för B'(x) så måste du därför använda kedjeregeln.
Kommer du vidare då?
tack så mycket