1 svar
72 visningar
Stoffer behöver inte mer hjälp
Stoffer 135 – Fd. Medlem
Postad: 4 jan 2018 13:36

Derivata användande analysens huvudsats

Beräkna derivatan av cos xsin x1-t2dt, 0<x<π2.

Lösning:

Jag förstår att detta är kopplat till analysens huvudsats, men jag är förvirrad. Jag vet hur jag löser problem på formen

S(x)=ag(x)f(t) dt, nämligen att:

h(x)=axf(t) dtS'(x)=dSdx=kedjeregeln=dhdg·dgdx.

Men i mitt nuvarande fall så vet jag inte hur jag ska göra motsvarande när jag skapar h(x) ovan.

Dr. G 9479
Postad: 4 jan 2018 13:45

Med f(t) = sqrt(1 - t^2) så blir integralen

F(sin(x)) - F(cos(x))

Derivatan av F(sin(x)) m.a.p x får du med kedjeregeln. F behöver du inte explicit bestämma, men du vet dess derivata f. 

Svara
Close