3 svar
84 visningar
Monika behöver inte mer hjälp
Monika 74 – Fd. Medlem
Postad: 15 apr 2020 11:59

derivata

Bestäm med hjälp av derivatans definition   f' (x)  då   f(x)=x2

Smutstvätt 25071 – Moderator
Postad: 15 apr 2020 12:10

Hur har du försökt själv? Hur lyder derivatans definition?

Kallaskull 692
Postad: 15 apr 2020 12:11

Hej Monika

Ifall vi stoppar in denna i derivatans definiton får vi(skriver inte lim)

 f'(x)=f(x+h)-f(x)h=(x+h)2-x2h=(x2+2hx+h2)-x2h=x2+2hx+h2-x2h=h2+2hxh=h+2xnär h går mot noll går detta mot 2x alltså f'(x)=2x

dr_lund 1177 – Fd. Medlem
Postad: 15 apr 2020 12:11 Redigerad: 15 apr 2020 12:13

Derivatans definition

limh0f(x+h)-f(x)h\lim_{h\to 0}\dfrac{f(x+h)-f(x)}{h}

f(x)=x2f(x)=x^2. Fortsätt på egen hand. OK?

Svara
Close