3 svar
84 visningar
imanoo behöver inte mer hjälp
imanoo 7 – Fd. Medlem
Postad: 21 feb 2018 00:24

derivata

hej!

Uppgiften går till såhär: 

Stina har deriverat funktionen

f(x)=3x2-8 och fått f´(x)=6x."Nu vet jag att kruvan till f(x) har lutningen 6 överallt", tänker Stina.Frågan är ifall hon har rätt och varför?

Jag svarade yes, men frågar er först vad ni tycker för att vara säker innan jag går vidare med uppgiften

Tack!

ConnyN 2582
Postad: 21 feb 2018 06:52

Om du ritar upp f(X) i grafräknaren så ser du att det inte kan vara så.
Du får olika värde på lutningen för varje värde på X du sätter in eller hur?

Yngve 40279 – Livehjälpare
Postad: 21 feb 2018 07:56

Derivatan i en viss punkt är ett mått på kurvans lutning i just den punkten.

Om derivatafunktionen är f'(x) = 6x så betyder det att derivatans värde beror på x på så sätt att

  • derivatans värde då x = 0 är f'(0) = 6*0 = 0, dvs kurvan till f(x) har lutningen 0 då x = 0.
  • derivatans värde då x = 1 är f'(1) = 6*1 = 6, dvs kurvan till f(x) har lutningen 6 då x = 1.
  • derivatans värde då x = 2 är f'(2) = 6*2 = 12, dvs kurvan till f(x) har lutningen 12 då x = 2.

och så vidare. Kurvan till f(x) har alltså inte lutningen 6 överallt.

------------------

Däremot så är derivatan av derivatafunktionen lika med 6, oberoende av värdet på x, dvs överallt. Detta innebär att derivatafunktionen har lutningen 6 överallt, men det är en helt annan sak.

Derivatan av derivatan kallas andraderivatan och betecknas med f''(x). Vi har alltså att f''(x) = 6.

ConnyN 2582
Postad: 21 feb 2018 08:29 Redigerad: 21 feb 2018 08:44

Borttaget då jag missförstod Yngve.

Svara
Close