Definitionen av derivata
Jag förstår inte definitionen av derivata. Inte ens det minsta. Kan någon snälla förklara denna uppgift:
Derivera x²+3x
Det är ett exempel i en bok men inte ens den förklaringen förstår jag
Förklarar de uppgiften med hjälp av derivatans definition eller med hjälp av deriveringsregler?
Derivatans definition
OK, då börjar vi från början. Du vet att man kan beräkna medelhastigheten om man vet sträckan och tiden, eller hur?
Menar du v=s/t?
Just det. Och du vet också att om man t ex åker buss, så ändras hastigheten mest hela tiden, så om man tittar på bussens hastighetsmätare, så är det inte alls säkert att den visar det värde som den "borde" enligt medelhastigheten?! Ibland kör bussen på motorväg och ibland står den stilla vid rött ljus.
Ja det förstår jag
Om man mäter hur långt bussen kör på t ex 10 sekunder och räknar ut medelhastigheten så får man ett värde som är närmare det som hastighetsmätaren visar (om inte bussen kör förfärligt ryckigt), och räknar men på 1 sekund får man ett ännu bättre värde och för en tiondels sekund blir det ännu närmare hastighetsmätaren, eller hur?
Nu kommer det lite småkrångliga beteckningar:
Hur lång sträcka bussen kör beror på tiden, så vi kan skriva den som .
Sträckan bussen har kört efter tiden t är alltså , och sträckan som bussen hunnit köra 10 sekunder senare är . Är du med så långt?
Då blir medelhastigheten under de 10 sekunderna , OK?
Jag krånglar till nämnaren lite.
Medelhastigheten under 1 sekund efter tiden t blir , och medelhastigheten efter 0,1 sekund efter tiden t blir . Är du med?
Om man låter talet efter t (d v s tidsskillnaden mellan de båda mätnigarna av sträckan) bli mindre och mindre, så kommer man närmare och närmare den sanna hastigheten vid tiden t.
Men man kan ju inte låta tidsskillnaden bli 0, för då skulle man behöva dividera med 0 och det är förbjudet.
Detta smiter man ifrån genom att använda sig av gränsvärden - gissar att du har varit tvungen att räkna en del på sådana nyligen?
Ja jag förstår
Om vi kallar den där lilla tidsskillnaden för x, kan vi skriva formeln för bussens hastighet som . Om vi sedan låter x gå mot 0 och skriver det som ett gränsvärde, får vi och så hittar vi på ett fint namn på det och kallar det derivatan av s(t) = . Är du fortfarande med, eller har jag tagit för många steg samtidigt?
Jag är med
Då kan vi derivera funktione du hade i början. Du hade . Sätter vi in detta i derivatans definition får vi . Kan du beräkna och förenkla täljaren?