8 svar
64 visningar
emmahm behöver inte mer hjälp
emmahm 46
Postad: 9 sep 2023 13:08 Redigerad: 9 sep 2023 13:33

De moivres formel

Hej! Jag lyckas inte räkna ut argumenten för följande ekvation:

z3 = 5-5i

Såhär har jag tänkt:

  • arc tan v = -5/5 = -1. Enligt enhetstriangeln är v = π4
  • Punkten ligger i 4e kvadranten vilket betyder att v = 7π4
  • Perioden för sin och cos är 2kπ där k = 0,1,2 ... n-1 (n=3 då blir k = 0,1,2)
  • Enligt de moivres formel är 3 * a = 7π/4 + 2 kπ (a = argumentet). 
  • a = 7π/12 + 2kπ/3. 

Detta blir ju fel enligt facit. En av vinklarna är visserligen 7π/12 men resterande 2 blir fel när jag använder perioden. Vart i min uträkning tänker jag fel?

Facit säger att argumenten är π/12, 7π/12 och 15π/12. 

Yngve 40261 – Livehjälpare
Postad: 9 sep 2023 13:31

Om det står så i facit så står det fel.

Argumentet för 5-5i är mycket riktigt 7pi/4.

Om z = r•(cos(w)+i•sin(w)) så får vi ekvationen 

4w = 7pi/4+n•2pi, dvs w = 7pi/16+n•pi/2

Det ger oss

w= 7pi/16

w2 = 15pi/16

w3 = 23pi/16

w4 = 31pi/16

emmahm 46
Postad: 9 sep 2023 13:36

Jag skrev fel, menade att det var upphöjt i 3 på z. Men det blir ändå samma siffror bara att det är dividerat med 12 istället för 16 som du skrev.

Det enda som jag kan tänka mig är att de inte har räknat vinkeln som 7pi/4 utan använt pi/4 och sedan lagt på perioden. Då får man samma svar som facit. Men eftersom punkten ligger i 4e kvadranten förstår jag inte hur det går ihop.. 

Yngve 40261 – Livehjälpare
Postad: 9 sep 2023 13:49

Kan du ladda upp en bild på uppgiften?

emmahm 46
Postad: 9 sep 2023 13:56

uppgift 6.64 a).

emmahm 46
Postad: 9 sep 2023 13:57

Macilaci 2122
Postad: 9 sep 2023 14:29 Redigerad: 9 sep 2023 14:32

Facit säger: -π12 (=23π12), 7π12,5π4(=15π12) vilket stämmer överens med ditt svar.

emmahm 46
Postad: 9 sep 2023 15:02

Jahaaa, det förstod inte jag. Men varför va det bara negativt på sin och inte på cos?

Yngve 40261 – Livehjälpare
Postad: 9 sep 2023 15:49

cos(-v) = cos(v)

sin(-v) = -sin(v)

Svara
Close