Burk-problemet
Hej!
Jag har en uppgift där jag ska beräkna vätskevolymen som man ska fylla en vanlig burk med för att den ska kunna balansera på kanten.
Min ungefärliga skiss:
Tyngdpunktens normal för burken och vätskan måste ju ligga innanför de streckade linjerna, så att den faller inom stödytan. Detta borde i sin tur ge ett intervall för volymen som man kan fylla burken med för att den ska kunna balansera.
Känns som att man kanske ska börja med att räkna ut tyngdpunkten hos en trunkerad
cylinder, men jag känner mig helt lost...
Väldigt tacksam för hjälp!!
Mvh KriAno
Man vet alltså den exakta formen nertill på burken?
Laguna skrev:Man vet alltså den exakta formen nertill på burken?
I uppgiften så ska man räkna på en riktig läskburk, men det känns svårt då burkens undersida är konkav, så man får nog bortse från det. Vinkeln går ändå ganska bra att bestämma.
Grundproblemet verkar vara att bestämma tyngdpunkten för en cylinder som är avskuren på snedden. Sen skulle jag anta att avfasningen nertill är tillräckligt stor för att burken verkligen ska kunna stå på den, men att den är försumbar vad gäller tyngdpunkten. Att burken har en konkav botten får vi ignorera också. Så det vi behöver veta om burkens geometri är vinkeln för avfasningen, som tydligen är 40 grader, och förhållandet mellan radien och höjden.
Återstår att visa att burken står stabilt, och inte kan tippa mot betraktaren, för beröringsytan är ju kurvad.
Laguna skrev:Grundproblemet verkar vara att bestämma tyngdpunkten för en cylinder som är avskuren på snedden.
Menar du att jag ska bestämma tyngdpunkten hos en trunkerad cylinder?
Laguna skrev:
Sen skulle jag anta att avfasningen nertill är tillräckligt stor för att burken verkligen ska kunna stå på den, men att den är försumbar vad gäller tyngdpunkten.
Hur resonerar du kring det? Menar du med eller utan vätska?
Vilken rolig uppgift!
För lite eller för mycket vätska så välter burken.
Jag gick direkt till påsen med pantburkar för ett litet experiment.
Burken på bilden innehåller ungefär 8 cl vatten.
KriAno skrev:Laguna skrev:Grundproblemet verkar vara att bestämma tyngdpunkten för en cylinder som är avskuren på snedden.
Menar du att jag ska bestämma tyngdpunkten hos en trunkerad cylinder?
Ja.
Laguna skrev:
Sen skulle jag anta att avfasningen nertill är tillräckligt stor för att burken verkligen ska kunna stå på den, men att den är försumbar vad gäller tyngdpunkten.
Hur resonerar du kring det? Menar du med eller utan vätska?
När den står på kant, dvs. antagligen med vätska.
Men för att bestämma tyngdpunkten hos en trunkerad cylinder måste man väl jobba med 3 dimensioner??
(har kört fast och kommer ingenstans...)
Det går ju faktiskt att göra, men det är på håret.
Man måste nog räkna med tre dimensioner, ja, men jag har inte försökt själv.
Oj vad svårt det här är! Har verkligen försökt men jag vet inte hur jag ska göra med asymmetrin.... Vore jättesnällt om någon kunde hjälpa!
Jag tror egentligen inte att jag ska behöva räkna med 3 dimensioner då vi inte har gått igenom det... Kan man lösa uppgiften på något lättare sätt?
Egentligen tror jag inte det.
Är detta verkligen en Matte 5-uppgift?
Som jag ser det kan en möjlig förenkling vara att beräkna då .
Yngve skrev:Egentligen tror jag inte det.
Är detta verkligen en Matte 5-uppgift?
Som jag ser det kan en möjlig förenkling vara att beräkna då .
Ja konstigt nog så är det det. Min lärare har sagt att uppgiften ska ta ung. 4 h att lösa, men jag har suttit med den ganska mycket längre än så utan att komma någonstans...
Kan du förklara lite tydligare hur du menar att jag ska göra? Snälla!
Bump...
Kan du räkna ut tyngdpunkten för en tvådimensionell figur?
Laguna skrev:Kan du räkna ut tyngdpunkten för en tvådimensionell figur?
Jag tror att jag kan lösa ut tyngdpunkten för en tvådimensionell figur, men bara om den är symmetrisk och inte när det blir asymmetriskt - så som det blir i det här fallet
Kan man tänka sig att Tyngdkraften F = m*g ska var större än T
Tyngdkraften + Tippkraften ska summeras som vektorer så det är mindre än 40 grader. Något sådant kanske?
Jag skrev fel tidigare.
Svaret är , då .
Svårigheten är att beräkna , och .
KriAno skrev:Laguna skrev:Kan du räkna ut tyngdpunkten för en tvådimensionell figur?
Jag tror att jag kan lösa ut tyngdpunkten för en tvådimensionell figur, men bara om den är symmetrisk och inte när det blir asymmetriskt - så som det blir i det här fallet
En halvcirkelskiva?
Laguna skrev:KriAno skrev:Laguna skrev:Kan du räkna ut tyngdpunkten för en tvådimensionell figur?
Jag tror att jag kan lösa ut tyngdpunkten för en tvådimensionell figur, men bara om den är symmetrisk och inte när det blir asymmetriskt - så som det blir i det här fallet
En halvcirkelskiva?
Ja det kan jag göra, men varför? Är det för att man bara tittar på tvärsnittet? Är det så att burken är så att är symmetriskt i en dimension, vilket gör att det går att reducera det hela till bara två dimensioner?
Men det är ju bara en halvcirkel upp till första "kanten", sedan blir det väl en ellips?
KriAno skrev:Laguna skrev:KriAno skrev:Laguna skrev:Kan du räkna ut tyngdpunkten för en tvådimensionell figur?
Jag tror att jag kan lösa ut tyngdpunkten för en tvådimensionell figur, men bara om den är symmetrisk och inte när det blir asymmetriskt - så som det blir i det här fallet
En halvcirkelskiva?
Ja det kan jag göra, men varför? Är det för att man bara tittar på tvärsnittet? Är det så att burken är så att är symmetriskt i en dimension, vilket gör att det går att reducera det hela till bara två dimensioner?
Men det är ju bara en halvcirkel upp till första "kanten", sedan blir det väl en ellips?
Nej, det går nog inte att reducera. Jag bara undrade vilka problem du kan lösa. Det är inte mycket svårare i tre dimensioner än i två.
Jag tror det är användbart att räkna ut tyngdpunkten för en trunkerad cylinder. Ta en cylinder med radie 1 och höjden 2 och skär av den med ett snitt som gör höjden till 0 på ena sidan och 2 på andra (där x = -1 respektive 1) . Om man nu skär den trunkerade cylindern vertikalt så är snittytorna rektanglar. Vet du hur man ställer upp en integral för x-koordinaten för tyngdpunkten?