1 svar
834 visningar
georgeyomaran behöver inte mer hjälp
georgeyomaran 10 – Fd. Medlem
Postad: 17 sep 2017 23:16

Bohrs Atommodell

Vad hände efter Bohrs Atommodell? Utvecklade man hans atommodell lite mer eller vadå? 

Smaragdalena 80504 – Avstängd
Postad: 17 sep 2017 23:22

https://sv.wikipedia.org/wiki/Atom

Dansken Niels Bohr kunde 1913 utveckla Rutherfords idéer vidare. Han insåg att ett Rutherfords atom inte kunde existera enligt den klassiska elektricitetslärans lagar. Enligt dessa skulle elektronerna sända ut strålning, förlora energi och falla ner i atomkärnan. Bohrs lösning var att lägga till ett villkor som kan tolkas som att elektronerna inte bara var partiklar utan också hade vågegenskaper. Genom att anta att den ensamma elektronen i väteatomen hade stabila banor runt atomkärnan och kombinera resultat från Plancks teori för svartkroppstrålning och Einsteins teori för den fotoelektriska effekten, kunde han beräkna de observerade spektrallinjerna för väteatomen. Ljuset i dessa linjer uppstår när elektronen faller ner från en bana med högre energi till en med lägre energi. Bohr kunde senare kvalitativt förklara hur grundämnenas karakteristiska röntgenstrålning uppstår genom att hål som bildats i de tyngre atomernas inre elektronskal fylldes med elektroner från något av de yttre skalen.

Bohrs atommodell fungerade emellertid kvantitativt bara för system med en elektron. Redan för heliumatomen blev resultaten helt fel. Problemet var hur man på ett generellt sätt skulle kunna föra in "kvantiseringsvillkor", dvs. inkludera elektronernas vågegenskaper i en teori som utgick från den klassiska mekaniken och elektricitetsläran.

De som lyckades med detta var Bohrs medarbetare tysken Werner Heisenberg och österrikaren Erwin Schrödinger. På sommaren 1925 respektive på nyåret 1926 kom dessa två med helt olika matematiska metoder fram till vad som Schrödinger senare visade var samma sak - den "moderna" kvantmekaniken. Det är Schrödingers formulering som används mest idag. Där är det grundläggande begreppet vågfunktionen, från vilken man kan beräkna sannolikheten för att finna en partikel - t.ex. en elektron - på en viss plats.

Enligt kvantmekaniken har elektronen både partikel- och vågegenskaper. Man kan således (i varje fall i princip) bestämma dess läge, som vi kan betrakta som en partikelegenskap, vid en viss tidpunkt men kan då inte veta något om dess hastighet, som vi här kan betrakta som en vågegenskap. På samma sätt kan man bestämma elektronens hastighet, men avsäger sig då möjlighete att säga exakt var den befinner sig. Detta är en konsekvens av Heisenbergs osäkerhetsprincip, som denne formulerade 1927.

Svara
Close