Bevisa två samband.
Hej.
Jag skulle behöva hjälp hur jag stegvis kan se följande samband ur den information som uppgiften ger mig. Jag har lite svårt att se det.
Ledtråd: Det verkar som att vinklar som ligger på ett visst avstånd från noll respektive nittio grader uppvisar liknande tal.
Spoiler alert!
Hur är det med och ? :)
Ja visst är det dem sambanden som visas i enhetscirkeln. 😊😊
Men jag tänkte ifall man kan bevisa följande pepparkvarn? Kan du hjälpa mig med att bevisa exempelvis: cos(90-v) ? Hur gör jag det?
Ska jag döpa en vinkel till 90-v då?
Det går att bevisa, men beviset (åtminstone det jag tänker på) bygger på subtraktionsformeln för cosinus och sinus, vilka i sig går att bevisa med hjälp av enhetscirkeln. Detta kommer dock först i Ma4, om jag inte minns fel. Subtraktionsformlerna säger att och . Om du sätter in vinkeln får du att och att . Om du vill bevisa subtraktionsformlerna finns det en video om detta som är bra. Alla fyra bevis görs på ungefär samma sätt. :)
Så det betyder att vi i Ma3c inte ska syssla med att bevisa sådant utan mer som att läsa av utifrån given info vilken/vilka som gäller?
Mycket riktigt. Du förväntas kunna använda enhetscirkeln för att konstatera att ja, jo det tycks stämma. Om du vill studera beviset är det såklart positivt, men det är inte nödvändigt för att klara kursen. :)
Det är meningen att du skall kunna rita in lämpliga rätvinkliga trianglar i enhetscirkeln, använda definitionerna av sinus och cosinus för en tätvinklig triangel och därifrån härleda en massa matnyttiga samband.
Det bygger på att byte av x och y koordinat motsvarar en reflektion i linjen y = x. Men det är inte helt trivialt att visa.
Det vill säga om vi speglar punkten (a , b) i linjen y = x så får vi punkten (b, a) men om man inte vet detta tycker jag frågan är svår att fatta.
PATENTERAMERA skrev:Det bygger på att byte av x och y koordinat motsvarar en reflektion i linjen y = x. Men det är inte helt trivialt att visa.
Det vill säga om vi speglar punkten (a , b) i linjen y = x så får vi punkten (b, a) men om man inte vet detta tycker jag frågan är svår att fatta.
Nej, jag skulle föreslå at man ritar en rätvinklig triangel med hypotenusan OP och den ena kateten längs positiva x-axeln och en annan triangel med hypotenusan OQ och ena kateten längs positiva y-axeln och att man sedan använder definitionerna att cos(v) = närliggande katet/hypotenusa och att sin(v)= motstående katet/hypotenusa. Detta tillsammans med att man vet att P har koordinaterna (a,b) och att Q har koordinaterna (b,a) gör att man kan få fram två samband mellan de trigonometriska värdena för vinklarna v respektive 90o-v.
Ett alternativt resonemang: Det är välkänt att för vinkeln v gäller: är x-koordinaten för P, respektive är y-koordinaten för P. Se nedanstående figur.
Vidare gäller att (för röd vinkel): är x-koordinaten för Q, är y-koordinaten för Q. Vi noterar att . Analogt för . Kontrollera!