Bestäm vinkel
Hur går jag till väga ? Hur ställer jag upp denna ekvation ?
Niki81 skrev :Hur går jag till väga ? Hur ställer jag upp denna ekvation ?
Det gäller att v + 3x + 27 = 180°
Och att v = 2x - 12°
Du kan sätta summan utav dessa ekvationer = 180 grader. Förstår du varför?
En rätvinkel är 180 grader
Hur löser jag ekvationen ?
Niki81 skrev :Hur löser jag ekvationen ?
Vi tar en sak i taget.
- Förstår du varför det gäller att v + 3x + 27 = 180°?
- Förstår du varför det gäller att v = 2x - 12°?
Jag antar att det är för att vinklarna på båda raderna är lika stora ?
Niki81 skrev :Jag antar att det är för att vinklarna på båda raderna är lika stora ?
Jag har ritat in en hjälpvinkel u i figuren, se bild:
1. v + 3x + 27 = 180
Eftersom de två horisontella linjerna är parallella så gäller att u är lika stor som 3x + 27 grader, dvs u = 3x + 27 grader.
Man ser även att u + v = 180 grader.
Om vi nu sätter in u = 3x + 27 i den sista ekvationen får vi att 3x + 27 + v = 180.
2. v = 2x - 12 grader
Man ser att u + 2x - 12 = 180 grader.
Sedan tidigare har vi sett att u + v = 180 grader.
Om vi ersätter 180 grader i den första ekvationen med u + v från den andra ekvationen så får vi att
u + 2x - 12 = u + v.
Subtrahera u från båda sidor:
2x - 12 = v.
Egentligen behöver man inte göra alla uträkningar om man bara "ser" att dessa samband gäller.
Nästa steg är att skriva om en av dessa ekvationer så att x är ensamt på ena sidan likhetstecknet och sedan stoppa in uttrycket på andra sidan likhetstecknet istället för x i den andra ekvationen.
Då får du en ekvation som endast innehåller v och siffror.
Den kan du förenkla så att du får ut ett siffervärde på v.
Kommer du vidare nu?
Sitter båda ekvationerna ihop ?!
Jag förstår inte riktigt hur jag ska göra
Niki81 skrev :Sitter båda ekvationerna ihop ?!
Jag förstår inte riktigt hur jag ska göra
Den ena ekvationen ger ett samband mellan x och v och den andra ekvationen ger ett annat samband mellan x och v. Båda sambanden ska gälla samtidigt.
Detta kallas för ett linjärt ekvationssystem.
Det finns bara en kombination av värden på x och v som gör att båda sambanden är uppfyllda samtidigt.
Har du läst om linjära ekvationssystem?
Där får du lära dig tre olika metoder att lösa ett sådant ekvationssystem.
Jag kan hjälpa dig ned substitutionsmetoden på denna uppgiften:
Du har ekvationerna
- v + 3x + 27 = 180
- v = 2x - 12
Skriv om ekvation 2 på följande sätt:
v = 2x - 12
v + 12 = 2x
v/2 + 6 = x
Nu har du ett uttryck för x som du kan ersätta (substituera) x mot i ekvation 1:
v + 3*(v/2 + 6) + 27 = 180
v + 3v/2 + 18 + 27 = 180
2v/2 + 3v/2 + 45 = 180
5v/2 = 135
5v = 270
v = 54