12 svar
647 visningar
karisma behöver inte mer hjälp
karisma 1983
Postad: 12 maj 2022 18:38

Bestäm symmetrilinjens ekvation

Hej!

Jag håller på med denna uppgift som du kan se nedan. Det jag har förstått är att jag ska ta reda på symmetrilinjen så jag försökte ta reda x - värdet, men jag kom inte längre än så här (se nedan) eftersom att det ej går att ta roten ur ett negativt tal. Jag undrar hur jag ska gå tillväga för att lösa uppgiften? Vad har jag gjort för fel?

Tack på förhand! 

ItzErre 1575
Postad: 12 maj 2022 18:43

Symmetrilinjen ligger mellan nollpunkterna. Hos en andragradare kan de två nollställena beskrivas som a+b resp a-b 

Om vi kollar på pq formeln som lyder

 x=-p2±(p2)2-qÄr a=-p2och b=(p2)2-q

 

För att hitta symmetrilinjen gör vi följande beräkning:

 (a+b)+(a-b)2dvs a

 

Ser du hur man kommer vidare

karisma 1983
Postad: 12 maj 2022 18:47

Jag är mer van vid att använda kvadratkomplettering. Hur gör jag då?

ItzErre 1575
Postad: 12 maj 2022 18:49 Redigerad: 12 maj 2022 18:49

Du kan hitta funktionens nollställen och göra exakt som du brukar göra.  

naytte 5032 – Moderator
Postad: 12 maj 2022 18:55
karisma skrev:

Jag är mer van vid att använda kvadratkomplettering. Hur gör jag då?

Du kommer få ett ±, eller hur? Det som står framför blir symmetrilinjens x-koordinat. I din uppgift exempelvis:
x2-6x+10=0x2-6x+32=-10+32x-32=-1x-3=±ix=3±i

Här blir alltså x=3 symmetrilinjen.

Ett snabbare (och bättre sätt) är bara att använda formeln -b2a som kommer från x=-b±b2-4ac2a. Variablerna är samma som i ax2+bx+c.

Om du stoppar in värdena i formeln får du -(-6)2·1=3.


Tillägg: 12 maj 2022 18:58

I just det här fallet hade du även kunnat använda pq-formeln för att hitta symmetrilinjen, alltså med hjälp av -p2, men det funkar bara här eftersom det inte finns någon koefficient framför x2. Det funkar inte i allmänhet.

karisma 1983
Postad: 12 maj 2022 19:00
naytte skrev:
karisma skrev:

Jag är mer van vid att använda kvadratkomplettering. Hur gör jag då?


x2-6x+10=0x2-6x+32=-10+32x-32=-1x-3=±ix=3±i

Men det går ju inte att ta roten ur negativa tal, så hur tog du roten ur -1?

naytte 5032 – Moderator
Postad: 12 maj 2022 19:01
karisma skrev:
naytte skrev:
karisma skrev:

Jag är mer van vid att använda kvadratkomplettering. Hur gör jag då?


x2-6x+10=0x2-6x+32=-10+32x-32=-1x-3=±ix=3±i

Men det går ju inte att ta roten ur negativa tal, så hur tog du roten ur -1?

-1=i, du kan läsa mer om det här.

karisma 1983
Postad: 12 maj 2022 19:40

Detta är något som jag inte har lärt mig än i ma2c, finns det nått annat sätt att lösa uppgiften på genom kvadratkomplettering?

naytte 5032 – Moderator
Postad: 12 maj 2022 19:51
karisma skrev:

Detta är något som jag inte har lärt mig än i ma2c, finns det nått annat sätt att lösa uppgiften på genom kvadratkomplettering?

Du kan lösa exempelvis x2-6x+10=1 istället om det känns enklare. Symmetrilinjen blir ju samma ändå.

Annars tror jag det bara är enklare att använda den andra metoden jag visade med -b2a. Den går ändå fortare att använda.

karisma 1983
Postad: 12 maj 2022 19:55
naytte skrev:
karisma skrev:

Detta är något som jag inte har lärt mig än i ma2c, finns det nått annat sätt att lösa uppgiften på genom kvadratkomplettering?

Du kan lösa exempelvis x2-6x+10=1 istället om det känns enklare. Symmetrilinjen blir ju samma ändå.

 

Hur kan x2-6x+10 = 1? Det borde väll ändå bli = 0? 

Annars tror jag det bara är enklare att använda den andra metoden jag visade med -b2a. Den går ändå fortare att använda.

Jo, jag vet, men vi har så gott som aldrig använt oss av abc-metoden i skolan och vi har nationella provet om 1 vecka så jag vill inte börja lära mig nya metoder nu så sent så att jag inte blandar ihop saker och ting och blir förvirrad (:

naytte 5032 – Moderator
Postad: 12 maj 2022 20:02
karisma skrev:
naytte skrev:
karisma skrev:

Detta är något som jag inte har lärt mig än i ma2c, finns det nått annat sätt att lösa uppgiften på genom kvadratkomplettering?

Du kan lösa exempelvis x2-6x+10=1 istället om det känns enklare. Symmetrilinjen blir ju samma ändå.

 

Hur kan x2-6x+10 = 1? Det borde väll ändå bli = 0? 

Annars tror jag det bara är enklare att använda den andra metoden jag visade med -b2a. Den går ändå fortare att använda.

Jo, jag vet, men vi har så gott som aldrig använt oss av abc-metoden i skolan och vi har nationella provet om 1 vecka så jag vill inte börja lära mig nya metoder nu så sent så att jag inte blandar ihop saker och ting och blir förvirrad (:

Det du gör är att kolla för vilket värde på x funktionsvärdet är 1. Det är fullt tillåtet.

karisma 1983
Postad: 13 maj 2022 00:42

Aha, så går det alltid att sätta in 1 i HL när man räknar ut en andragradsfunktion? 

naytte 5032 – Moderator
Postad: 13 maj 2022 07:41
karisma skrev:

Aha, så går det alltid att sätta in 1 i HL när man räknar ut en andragradsfunktion? 

Det du gör är att räkna ut för vilket värde på x som y blir 1. Eftersom att hela parabeln är "byggd" runt en symmetrilinje kommer du få samma symmetrilinje hela tiden.

Svara
Close