25 svar
664 visningar
Katarina149 behöver inte mer hjälp
Katarina149 7151
Postad: 2 dec 2021 14:13

Bestäm största & minsta värdet

"Bestäm största och minsta värde till funktionen  f(x) = sin(x) * cos(x) i intervallet 0 ≤ x ≤ 3,2."

Måste man använda produktregeln här? Eller kan man lösa den frågan genom att enbart används kedjeregeln?

joculator 5289 – F.d. Moderator
Postad: 2 dec 2021 14:37

Du kan ju skriva om sin(x)·cos(x)=sin(2x)2   Enligt regeln för dubblevinkeln för sinus.

Och sedan derivera och använda då  kedjeregeln istället.

(du skall få samma svar. Testa båda!)

Katarina149 7151
Postad: 2 dec 2021 14:43

Hur ska jag använda kedjeregeln här?

joculator 5289 – F.d. Moderator
Postad: 2 dec 2021 14:52

om du t.ex deriverar y=x32  så blir det y'=3x22  inget händer med 2:an i nämnaren

----------------------------------------------------------
I din fråga har du      y=sin(2x)2  

Vad blir det när du deriverar  sin(2x)?   (använd kedjeregeln)

Katarina149 7151
Postad: 2 dec 2021 14:54

joculator 5289 – F.d. Moderator
Postad: 2 dec 2021 14:57

Yes!

Men du kan förenkla ditt svar.

Katarina149 7151
Postad: 2 dec 2021 15:46

Jag har beräknat vad andra derivatan blir. Och om jag sätter in x=0.79 så får jag en negativ andraderivata vilket innebär att då x=0.79 har vi en maximipunkt. Dvs att det är det största värdet. Då x=1.17  får jag även ett negativt tal på andra derivatan. Det måste isåfall. Vara något fel med min uträkning 

Yngve 40278 – Livehjälpare
Postad: 2 dec 2021 16:10 Redigerad: 2 dec 2021 16:15

Varför skriver du 1,57 istället för pi/2?

Och varifrån får du 2,35?

Ekvationen cos(v)=0\cos(v)=0 har lösningsmängden v=±π2+n·2πv=\pm\frac{\pi}{2}+n\cdot2\pi (som går att förenkla, eller hur?)

Fortsätt därifrån.

======

Och du behöver inte använda andraderivatan eftersom det endast ha dlar om att hitta största och minsta värdet.

Däremot måste du tänka på en annan sak, nämligen intervallets ändpunkter.

Katarina149 7151
Postad: 2 dec 2021 16:38 Redigerad: 2 dec 2021 16:38

ja men i det här fallet har vi cos(2x)=0 och  inte cos(v)=0

Var får du cos(v)=0 ifrån?

Yngve 40278 – Livehjälpare
Postad: 2 dec 2021 17:51

Jag ville bara förenkla genom att kalla 2x för v ett litet tag, som vi gjorde i början av din resa in i den förunderliga världen bestående av trigonometriska ekvationer.

Men OK, vi kör på 2x.

Ekvationen cos(2x)=0\cos(2x)=0 har lösningsmängderna 2x=±π2+n·2π2x=\pm\frac{\pi}{2}+n\cdot2\pi (som går att förenkla, eller hur?)

Fortsätt därifrån.

=============

Men du svarade inte på mina frågor om 1,57 och 2,35.

Katarina149 7151
Postad: 2 dec 2021 23:42


Jag får alltså att x=-pi/4 ger oss en minpunkt för andra derivatan är större än 0. Medans x=pi/4 ger oss en maxpunkt för andra derivatan är mindre än 0

Yngve 40278 – Livehjälpare
Postad: 3 dec 2021 06:55

Lösningen x = -pi/4 ligger inte i det efterfrågade intervallet.

Du ska ta fram det/de x-värden som ligger i det efterfrågade intervallet och undersöka funktionens värden vid dessa x-värden.

Du bör även ta med funktionens värden i intervallets ändpunkter.

Och svaret ska vara funktionens minsta respektive största värde,  inte vid vilka x- koordinater dessa värden inträffar.

Du kan men behöver inte ta fram och använda andraderivatan för att hitta dessa.

Katarina149 7151
Postad: 3 dec 2021 12:40 Redigerad: 3 dec 2021 12:44


Jag testar med att sätta in x=pi/4 i den ursprungliga ekvationen och får ett postivt värde medans när jag sätter in x=-pi/4 så får jag ett negativt värde som inte är inom intervallet. Alltså är det rimligast att det Största värdet är sin(pi/2)/2 =1/2 

Minsta värdet är sin(-pi/2)/2 = -1/2

Yngve 40278 – Livehjälpare
Postad: 3 dec 2021 14:04

Du måste visa att du tar fram alla möjliga värden på x.

Du ska alltså pröva med olika värden på n.

Katarina149 7151
Postad: 3 dec 2021 14:15

Hur menar du? Kan du ge exempel på vad du menar?

Programmeraren Online 3390
Postad: 3 dec 2021 14:23 Redigerad: 3 dec 2021 14:24

Du har tagit fram x1 och x2. Vilka x ligger i intervallet (tänk på perioden).

Katarina149 7151
Postad: 3 dec 2021 15:31 Redigerad: 3 dec 2021 15:32

3pi/4  är det enda x som ligger i intervallet , men hur ska jag tolka om det är Max eller min?

Programmeraren Online 3390
Postad: 3 dec 2021 16:04

3pi/4 är rätt.
Men ger inte x1=pi/4+pi*n något värde i intervallet?

Du har funktionen.  Då kan du få fram värden.

OBS: Yngve påpekade även:
"Du bör även ta med funktionens värden i intervallets ändpunkter."
I ett godtyckligt intervall kan ju gränserna råka ge värden som är min eller max utan att derivatan där är 0. Så gränserna ska alltid undersökas (sätt in och beräkna. kontrollera om min eller max)

Katarina149 7151
Postad: 3 dec 2021 16:11 Redigerad: 3 dec 2021 16:11

Nej det ger inte ger inget svar inom intervallet jag har testat. Det kan jag visa dig :

x=pi/4 + pi*n 

om n=0
x=0.785  (ej inom intervallet)

om n=1

x=3.925 (ej inom intervallet)

============

Jag förstår inte vad som menas ”Du bör även ta med funktionens värden i intervallets ändpunkter."

Programmeraren Online 3390
Postad: 3 dec 2021 16:41 Redigerad: 3 dec 2021 16:43

1) Förstår inte vad du menar: 0 <= 0,785 <= 3,2

2) En kurva kan ha toppar och dalar med max och min. Men i ett intervall kan andra punkter vara min och max.
Exempel: vad är min och max av sin(x) i intervallet 0 till 150 grader.
Deriverar du och hittar nollställen får du min för x=270 och max för x=90.
Men i intervallet 0 till 150 grader finns min för x=0 och max för x=90.
Min fick vi för intervallets nedre gräns x=0, max fick vi extrempunkten x=90

Katarina149 7151
Postad: 3 dec 2021 21:10

Okej , 0.785 ligger inom intervallet. Det är ju större än 0.. :) 

Men det är otydligt vad du menar i förklaring 2)

Alex111 333
Postad: 4 dec 2021 00:07

Han menar nog att för olika intervall finns det olika max. och min punkter. Just i intervallet 0 till 150 grader är det min för x=0 och max för x=90. 

Katarina149 7151
Postad: 4 dec 2021 00:10

Okej..? Så hur hittar jag Max och minpunkten? Känns att jag har tappat bort mig 

Alex111 333
Postad: 4 dec 2021 00:28 Redigerad: 4 dec 2021 00:29

Du hittar den genom att få fram förstaderivatan och eventuellt andraderivatan om det behövs. Är andraderivatan är negativ är det en max. punkt (lutningen, dvs. förstaderivatan minskar). Om andraderivatan är positiv är det en min. punkt (lutningen, dvs. förstaderivatan ökar). 

Katarina149 7151
Postad: 4 dec 2021 00:36

Ska jag alltså derivera funktionen f(x)=sin(x)cos(x) 2 ggr för att få fram andra derivatan och därmed testa med att sätta in de x värden jag fått fram. Om andra derivatan blir > 0 så är det en minpunkt (minsta värdet) om andra derivatan istället blir < 0 då är det Max punkt 

Alex111 333
Postad: 4 dec 2021 00:48

Egentligen räcker det med att jämföra värdena för x i min. och max. punkten. Fast i vissa uppgifter kan det hända att du behöver andraderivatan, t.ex om du bara behöver få fram 1 extrempunkt och du behöver få fram om det är en max/min punkt. När det är 2 extrempunkter så räcker det att jämföra f(x) för de 2 punkterna. 

Svara
Close