6 svar
1221 visningar
lamayo behöver inte mer hjälp
lamayo 2570
Postad: 21 apr 2018 10:25

Bestäm medelpunkt och radie

Bestäm medelpunkten och radien för den cirkel som beskrivs av ekvationen x^2+4x+y^2+4=25.

Jag antar att den bör göras om på något sätt men hur vet jag inte riktgt.

Tänker kanske ( x^2-(-4x )+( y^2-(-4)=25 men tror inte det stämmer då jag inte på något lättare sätt kan få fram medelpunkt och radie. 

Teraeagle Online 21074 – Moderator
Postad: 21 apr 2018 10:32

Hur ser den allmänna ekvationen för en cirkel ut?

lamayo 2570
Postad: 21 apr 2018 10:41
Teraeagle skrev :

Hur ser den allmänna ekvationen för en cirkel ut?

(x-a)^2+(y-b)^2=r^2

Teraeagle Online 21074 – Moderator
Postad: 21 apr 2018 11:14

Då kan du utveckla den ena parentesen och skriva om ekvationen till

x2-2ax+a2+(y-b)2=r2 x^2-2ax+a^2+(y-b)^2=r^2

Om du nu jämför leden med dem i ekvationen i uppgiften så kan man identifiera att

-2ax=4x -2ax=4x

a2=4 a^2=4

(y-b)2=y2 (y-b)^2=y^2

r2=25 r^2=25

Kan du nu bestämma värdena på a, b och r?

lamayo 2570
Postad: 21 apr 2018 11:24
Teraeagle skrev :

Då kan du utveckla den ena parentesen och skriva om ekvationen till

x2-2ax+a2+(y-b)2=r2 x^2-2ax+a^2+(y-b)^2=r^2

Om du nu jämför leden med dem i ekvationen i uppgiften så kan man identifiera att

-2ax=4x -2ax=4x

a2=4 a^2=4

(y-b)2=y2 (y-b)^2=y^2

r2=25 r^2=25

Kan du nu bestämma värdena på a, b och r?

får att r=5. Får dock inte ut a och b. Försökte sätta in så att: x^2+4x+4+(y-b)^2=25 men tror det blev fel?

Teraeagle Online 21074 – Moderator
Postad: 21 apr 2018 11:30 Redigerad: 21 apr 2018 11:34

Från -2ax=4x -2ax=4x får du att a=-2 a=-2 och (y-b)2=y2 (y-b)^2=y^2 kan skrivas om till (y-b)2=(y-0)2 (y-b)^2=(y-0)^2 som visar att b=0 b=0 . Cirkelns medelpunkt (a,b) (a,b) finns alltså vid koordinaten (-2,0) (-2,0) .

lamayo 2570
Postad: 21 apr 2018 11:38
Teraeagle skrev :

Från -2ax=4x -2ax=4x får du att a=-2 a=-2 och (y-b)2=y2 (y-b)^2=y^2 kan skrivas om till (y-b)2=(y-0)2 (y-b)^2=(y-0)^2 som visar att b=0 b=0 . Cirkelns medelpunkt (a,b) (a,b) finns alltså vid koordinaten (-2,0) (-2,0) .

aha okej då förstår jag, tack för hjälpen!

Svara
Close