1 svar
56 visningar
lava 246 – Fd. Medlem
Postad: 11 jan 2019 20:28

Bestäm M

Hej! Som ni kan se på denna uppgift att man ska bestäma M,, jag har löst fram till steg (2), och har fått hjälp från läraren med steg (3) an.. jaså jag förstår inte riktigt varför på steg (3) ska man ska ersätta (x) an med 2? 🤔

 

Albiki 5096 – Fd. Medlem
Postad: 11 jan 2019 23:34

Funktionen ff är deriverbar på det öppna intervallet (0,2) så det gäller att

    f(x)-f(1)=f'(c)·(x-1)f(x)-f(1) = f'(c) \cdot (x-1) där cc är ett tal som ligger någonstans mellan xx och 11.

Derivatan är f'(x)=15x2+6x+14f'(x) = 15x^2+6x+14 och när x=cx=c blir derivatan f'(c)=15c2+6c+14f'(c) = 15c^2+6c+14. Talet cc ligger mellan 00 och 22 så talet f'(c)f'(c) är mindre än 15·22+6·2+14=8615\cdot 2^2+6\cdot 2+14=86; det följer att

    |f(x)-f(1)|86|x-1|.|f(x)-f(1)| \leq 86|x-1|.

Svara
Close