1 svar
50 visningar
ormondo 10
Postad: 8 okt 2022 13:59 Redigerad: 8 okt 2022 14:02

Bestäm kontinuerlig slumpvariabel

Jag kämpar med hur man räknar på kontinuerliga slumpvariabler.

Exempel: fx(x):=2 för 2.5 \leq  x \leq 3, fx(x)=0" för alla andra x.

Uppgift: Bestäm Fx(x).

Vad jag kan förstå från böcker är att man här ska integrera f(x)x, och sätta 2.5 och 3 som övre och nedre gräns. I sådana fall skulle man få:

2.532(t)dt=6-5=1\int_{2.5\to 3} 2(t) dt=6-5=1

Men detta är tydligen helt fel. Rätt svar är 2x-5 för 2.5 \leq x \leq 3, och 1 för x > 1. 

Skulle vara väldigt nice om någon kunde förtydliga detta.

Calle_K 2285
Postad: 8 okt 2022 14:10 Redigerad: 8 okt 2022 14:11

F(k) är sannolikheten att vi hittar xk.

Genom att betrakta f(x) vet vi att F(x)=0 för x2,5 och F(x)=1 för x3.

Därmed återstår att bestämma F(x) inom intervallet 2,5x3 vilket vi gör mha integration.
Dock vill vi endast veta funktionen, dvs du ska integrera utan integrationsgränser. Därefter tar vi reda på integrationskonstanten mha randvärdena vi har.

Svara
Close