2 svar
97 visningar
Meriamh behöver inte mer hjälp
Meriamh 2
Postad: 20 jun 2022 10:30

Bestäm konstanten

Funktionen ges av f(x)=x^8+ax^5-3x 

Jag ska bestämma konstanten a så att lim h->0 = f(1+h) - (1)/ h =-3

Hur går jag tillväga?

Laguna Online 30711
Postad: 20 jun 2022 10:43

Man kan utveckla (1+h)8 osv. men det är nog meningen att du ska använda derivatans definition, dvs. se att det sökta uttrycket är derivatan av f(x) i en viss punkt.

Simon.pi 36
Postad: 20 jun 2022 11:05 Redigerad: 20 jun 2022 11:16

Jag har räknat på det och kom fram till två sätt att tackla detta problem.

Nr.1 Att som Laguna nämnde att man kan utvecklar f(1+h)8-f(1)hmed till exempel binomialsatsen och använda pascals triangel som en ledstång. https://sv.wikipedia.org/wiki/Binomialsatsen

Men för mig tar detta alldeles långt tid i och med att det är upphöjt med 8.

Nr.2 Som du kanske vet så beskriver ditt problem derivatans definition f'(x)=f(x+h)-f(x)h. Alltså vad lutningen är i en vis punkt. I ditt fall är lutningen -3 när x = 1. Om du sedan deriverar din funktion och ställer upp ekvationen f´(1)=-3 kan du få ut a värdet ;)

(Tips: Om du har glömt eller inte gått igenom deriveringsreglerna så kan du söka upp det på nätet. "Deriveringsregler polynomfunktion")

Svara
Close