2 svar
152 visningar
tomast80 behöver inte mer hjälp
tomast80 4245
Postad: 8 aug 2020 19:51 Redigerad: 25 apr 2022 10:58

Bestäm funktion från MacLaurin-utveckling

Bestäm den funktion: f(x)f(x) som har följande MacLaurin-utveckling:

k=0(-1)k·x1+2kk·k!+(k+1)!\displaystyle \sum_{k=0}^{\infty} \frac{(-1)^k\cdot x^{1+2k}}{k\cdot k!+(k+1)!}

parveln 703 – Fd. Medlem
Postad: 8 aug 2020 22:25
Visa spoiler

Derivering termvis och substitution t=x^2 ger serien för e^-t. Alltså är derivatan av funktionen exp(-x^2). Om vi låter f beteckna den okända funktionen har vi då f(x) = (integral 0 till x) av exp(-s^2)ds. Notera f(0)=0.

tomast80 4245
Postad: 9 aug 2020 08:22

Snyggt parveln! Detta går också att skriva som:

π2·erf(x)\displaystyle \frac{\sqrt{\pi}}{2}\cdot erf(x)

där erf(x)erf(x) är den s.k. felfunktionen.

Svara
Close