Bestäm F(x) om f(x)=e^x/1+e^x och F(0)=ln8
Hej!
Finns där någon som orkar förklara för mig vad som händer här på ett ungefär. Jag försöker klara en analys a tenta och det var ett tag sedan jag studerade så har glömt massa basics. Förstår att det är många delar jag måste repetera. Logaritmer till exempel :/ Har glömt hur ln och allt hänger ihop. F(0)=ln8 är att det ska bli noll när man sätter ihop primitiva av f(x) och F(0)=ln8 med varandra, har jag tolkat rätt? ln, det tal e ska upphöjas till för att bli.., undrar mest hur jag ska tänka här och om ni har tips på vad jag ska repetera. e och ln tar ut varandra som Batman och Jokern väl? Tacksam för hjälp.
Jag är osäker på vad du frågar om, vad jag kan se så har du gjort helt rätt.
Jag får räkna själv helt enkelt, det är inte mitt svar. Fick det på en hjälp grej i skolan och ville mest få en tolkning på vilka delar man bör kunna för detta men tack ändå.
Det viktigaste här att vet detta sambandet:
Annars får du integrera själv, vilket inte är hela världen så länge du vet hur substitution fungerar. :)
Exempelvis med så fås;
Jo, sisådär, får räkna och nöta. Kanske lite dum fråga men hur funkade detta sambandet. Har nog lite hjärnsläpp nu. Tack för svar! :)
Det är en direkt konsekvens av kedjeregeln.
I vanliga fall så har vi har , men detta är pga att inre derivatan är , eller hur? Kedjeregeln säger att om vi har en sammansatt funktion så fås derivatan som:
I ditt fall har vi:
Vi vet redan att , så att och sedan har vi kvar.
Vi har alltså:
Wow tack! Hänger inte med helt men ska nöta, har massa luckor att ta igen
Vilken del hänger du inte med på? :)
Du får gärna fråga om det är något som ser konstigt ut eller om det är något steg som är oklart?
Koncepten här som du behöver vara bekväm med:
Skrev de i fel ordning, men gå efter numreringen.
Tack för länkarna! Jo, nu lossna det, fastna på derivatan av ln x men tittar på ett bevis nu. Fastnar på basics och hur saker hänger ihop ibland. Får fråga massa bara. Tack så många för tiden du la på detta!
Ingen som helst fara. :)
Det finns ett ganska snyggt bevis med hjälp av kedjereglen av derivatam av ln x