1 svar
57 visningar
pythonedition 4
Postad: 10 feb 2023 08:29

Bestäm derivatans nollställen

Uppgiften jag har problem med ser ut som följande:

Bestäm derivatans nollställen

a) u(t) = sin (2t - π6)

b) i(t) = cos (t - π3)

 

Jag har försökt göra båda, och får samma "typ" av fel på båda uppgifterna.

Såhär ser min lösning för a) ut:

 u(t) = sin (2t - π6)
⇒  u'(t) = 2 cos (2t - π6)

Man vill veta nollställena för derivatan, så jag sätter:

0 = 2 cos (2t - π6)

⇒ 0 = cos (2t - π6)

⇒ π2+ n · 2 π = 2t - π6

⇒ π2+π6+ n · 2 π = 2t

⇒ 2π3+ n · 2 π = 2t

⇒ 2π3·2n·2π2= t

⇒ t = ±π3+ n · π

(± eftersom det finns två lösningar, och det är en cosinusekvation)

Men rätt svar är inte t = ±π3+ n · π, utan rätt svar är π3+ n · π2

Liknande problem har jag på b)-uppgiften. Mitt svar blev t = π3+ 2π, men rätt svar är π3+ π.

Jag förstår inte varför "n"-delen av svaret är hälften så stor som jag fick ut den att vara? Trigonometri är inte min starka sida så jag har inte lyckats lista ut något själv. 

Tack för svar!

Smaragdalena 80504 – Avstängd
Postad: 10 feb 2023 08:39

Du har tappat hälften av lösningarna - rita, så att du ser på vilka två ställen linjen x = 0 skär enhetscirkeln! Alternativt kan du rita upp själva funktionen och se att den har två extremvärden per period, ett maximum och ett minimum.

Svara
Close