17 svar
200 visningar
Laura2002 behöver inte mer hjälp
Laura2002 474
Postad: 14 apr 2021 20:18

Bestäm area mha integral

Hej! Jag skulle behöva hjälp med  uppgift 4052

Laura2002 474
Postad: 14 apr 2021 20:19

Laura2002 474
Postad: 14 apr 2021 20:20

Ser någon vad jag har gjort fel? 

Laura2002 474
Postad: 15 apr 2021 09:19

never mind, ser själv vad jag har gjort fel

Laura2002 474
Postad: 15 apr 2021 09:40

Fick inte rätt på den. Testade att skriva en integral 

-40.774-(x^2)/4 -5x  dx

men får helt fel svar. Ser någon vad det är som jag gör fel? (0.77 är där funktionerna skär varandra)

Laguna Online 30484
Postad: 15 apr 2021 10:23

Till vänster om x = 0 ska 5x inte vara med.

Laura2002 474
Postad: 15 apr 2021 14:14

aha okej, så då räknar jag först ut arean i andra kvadranten (128/12) och sen gör jag en enskild integral för arean i första kvadranten? Får fortfarande fel svar

(varför är inte 5x med när x<0?)

Laura2002 474
Postad: 15 apr 2021 14:15

är det för att man då utgår från att y=0 är den nedre funktionen?

Yngve 40279 – Livehjälpare
Postad: 15 apr 2021 14:31 Redigerad: 15 apr 2021 14:33

Ja.

I första kvadranten är y = 5x den nedre funktionen.

I andra kvadranten är y = 0 den nedre funktionen.

Om du ändå får fel svar: Visa hur du ställer upp och beräknar de båda integralerna.

Laura2002 474
Postad: 21 apr 2021 19:47

Laura2002 474
Postad: 21 apr 2021 19:48

Får fortfarande fel svar 

Laura2002 474
Postad: 21 apr 2021 19:49 Redigerad: 21 apr 2021 19:51

Har skrivit upp arean i andra kvadranten och sedan adderat arean i den första kvadranten. Får ändå inte rätt på det. 

Yngve 40279 – Livehjälpare
Postad: 21 apr 2021 20:21 Redigerad: 21 apr 2021 20:21

Du kan och bör alltid alltid kontrollera dina primitiva funktioner.

Har du gjort det?

Om inte, gör det.

Sen tror jag att du ska svara med ett exakt värde, inte ett närmevärde.

Laura2002 474
Postad: 22 apr 2021 15:24

Ja, jag har dubbelkollat de primitiva funktionerna, men de ser ut att stämma.

ConnyN 2582
Postad: 22 apr 2021 15:25

Ett sätt att tänka här är att räkna ut arean under y=4-x24  

med gränserna x=-4 och x=0,77

då får du ytan under kurvan. Sedan räknar du ut ytan under den räta linjen y=5x

med gränserna x=0 och x=0,77  

Den ytan drar du bort från den första. Viktigt är att du markerar ytorna på ett papper så du förstår vad du gör.

Vill du arbeta med exakta siffror så ersätter du 0,77 med 116-10

ConnyN 2582
Postad: 22 apr 2021 20:28 Redigerad: 22 apr 2021 20:55

På kul så har jag gjort "fattig mans version" av integralen. D.v.s. jag har ritat upp den på papper och delat in den i 19 rektanglar.
Varje rektangel är 0,25 l.e. och sedan har jag mätt i mitten på varje stapel och det blir väl lite sisådär med den uppskattningen med tanke på att jag mäter med linjal och kurvan är handritad.
Skissen kommer här. Jag råkade skriva fel på höjden på staplarna. De måste divideras med 10.

Om vi börjar med hela arean från x = -4 till x = 0,77 så ser det ut så här:
k=119=0,25(0,35+0,8+1,3+1,65+1,95+2,35+2,65+2,9+3,2+3,35+3,55+3,7+3,85+3,95+3,975+4+4+3,975+3,95)

Det blir 13,86 a.e.  med integral fick jag 13,712 a.e., med Geogebra 13,71 a.e.

Ytan som ska tas bort är alltså den under y = 5x som begränsas av x = 0 till x = 0,77
Den är tre staplar bred och det blir så här:
k=13=0,25(0,7+1,9+3,15)1,44a.e.
Tar vi bort det från 13,86a.e. så får vi 12,42a.e. och 12,23a.e. fick jag med integralberäkning.
Så 12a.e. borde vara svaret.

Laura2002 474
Postad: 25 apr 2021 11:14

Tänkte också så, men i facit står det att arean ska vara 15 a.e...

Men tusen tack för hjälpen! Då är det nog som det står fel i facit (kan dubbelkolla med min lärare i veckan också). 

ConnyN 2582
Postad: 25 apr 2021 18:30

Här kommer ett rättelseblad från bokförlaget Liber

Där står att sida 259 Uppgift 4052 att y = 5x men ska vara y = 1,5x.

Då kanske svaret kan bli 15 a.e.

Svara
Close