6 svar
125 visningar
ibra behöver inte mer hjälp
ibra 8 – Fd. Medlem
Postad: 11 jan 2020 13:46

Bestäm andragradsfunktionen

Hej! Jag behöver lite hjälp med en fråga. Kan man bestämma en Andragradsfunktion y=ax^2 + bx + c om man har tre punkter som (1,1) (-1,3) (2,4)

Smaragdalena 80504 – Avstängd
Postad: 11 jan 2020 14:16 Redigerad: 11 jan 2020 14:28

Välkommen till Pluggakuten!

Svar ja. För en rät linje (d v s en förstagradskurva) behövs det två punkter, för en andragradskurva tre punkter, för en tredjegradskurva fyra punkter, för en fjärdegradskurva fem punkter och så vidare.

ibra 8 – Fd. Medlem
Postad: 11 jan 2020 16:18
Smaragdalena skrev:

Välkommen till Pluggakuten!

Svar ja. För en rät linje (d v s en förstagradskurva) behövs det två punkter, för en andragradskurva tre punkter, för en tredjegradskurva fyra punkter, för en fjärdegradskurva fem punkter och så vidare.

Tack så mycket!

Men hur får jag a, b och c då? Jag har en aning men är ej säker om det är rätt!

Ska jag göra en ekvation för varje punkt och sen försöka lösa den med hjälp av ekvationssystem med tre obekanta?

Eller finns det ett annat sätt?

Tack på förhand :)

Yngve Online 40288 – Livehjälpare
Postad: 11 jan 2020 16:43

I detta fallet är det ett ekvationssystem med tre ekvationer som gäller.

Ibland kan de givna punkterna vara valda så att det går att ta genvägar.

Exempel 1: Om en av punkterna ligger på y-axeln så kan du direkt få ut värdet på c.

Exempel 2: Om två punkter har samma y-värde så vet du att symmetrilinjen ligger mitt emellan dessa punkter. Eftersom symmetrilinjen ligger vid x=-b2ax=-\frac{b}{2a} så får du ett extra samband mellan aa och bb.

Smaragdalena 80504 – Avstängd
Postad: 11 jan 2020 16:47

Ska jag göra en ekvation för varje punkt och sen försöka lösa den med hjälp av ekvationssystem med tre obekanta?

Tyvärr vet jag inte något enklare sätt. Ibland vet man f(0) och då kan man få fram konstanten c utan att räkna. Om man har två y-värden som är samma kan man ta fram symmetrilinjen. Ingen av dessa fall gäller för dig.

Du vet ju att a+b+c=1 och att a-b+c=3. Det inbjuder till additionsmetoden för att få fram b och (a+c).

ibra 8 – Fd. Medlem
Postad: 11 jan 2020 19:02

Ok tack för hjälpen! :)

Soderstrom 2768
Postad: 11 jan 2020 19:22

1 konstant en punkt

2 konstanter 2 punkter

Osv..

Svara
Close