8 svar
398 visningar
Scientia behöver inte mer hjälp
Scientia 11
Postad: 26 nov 2023 18:14

Bestäm andragradsfunktion vid kännedom av vertex och ytterligare en punkt

Från toppen av ett högt fyrtorn kastar Percy en sten ut i havet. 9,6 meter från Percy i
horisontell led når stenen sin maximala höjd vilken är 4,7 meter ovanför stenens
ursprungliga position. Stenens ursprungliga position är 78,0 meter över havsnivån.
Stenens bana genom luften följer en andragradskurva. Bestäm avståndet i horisontell
led från Percy till punkten där stenen landar i havet (sträckan s i figuren).
Tankar: Eftersom jag har vertex(extrempunkten) och ytterligare en punkt på grafen så använde jag mig av: y = k(x-a)^2 + b 

Jag hittade på en graf, där stenens bana börjar är 0 på x axeln och därmed är punkten 0,78. Maximipunkten hittade jag genom att utgå ifrån att det är 9,6 på x-axeln och sedan ta 78 + 4,7 på y-axeln. 

0;78

9,7 ; 82,7

Satt in siffrorna i formeln:

y = k(x-9,7)^2 + 82,7 

78 = k(0-9,7)^2+ 82,7 

78 = -94,09k + 82,7

Minus 82,7 på båda sidor:

-4,7 = -94,09

Jag kan skriva ut hela min lösning (som är fel) men jag är ganska säker på att något gått snett redan här. Använder jag fel formel eller är det något slarv fel eller är det något annat?  

Yngve 40597 – Livehjälpare
Postad: 26 nov 2023 18:32 Redigerad: 26 nov 2023 18:34

Hej.

Snygg bild.

Det enda jag saknar är att du lägger in ett koordinatsystem så att det är tydligt var origo ligger och vilka riktningar på x och y du anser vara positiva.

======

Vad gäller din lösning så ser jag två brister:

  1. Du har skrivit 9,7 istället för 9,6 i formeln
  2. Du har fått fel tecken på kvadraten (0-a)2. Det blir ju (-a)2, vilket är lila med a2, inte -a2.
Scientia 11
Postad: 26 nov 2023 18:43
Yngve skrev:

Hej.

Snygg bild.

Det enda jag saknar är att du lägger in ett koordinatsystem så att det är tydligt var origo ligger och vilka riktningar på x och y du anser vara positiva.

Tyvärr så är det här hela frågan. Jag hittade på vart punkterna fanns på x och y axeln i min uträkning. Tänkte att eftersom de enbart vill veta avståndet från start till där stenen träffar marken i x led så spelar det ingen roll vilka koordinater det är så länge det blir proportionellt. Utgick därför ifrån att starten av kastet är på x = 0 och därmed gjorde jag punkten till: 0,78

======

Vad gäller din lösning så ser jag två brister:

  1. Du har skrivit 9,7 istället för 9,6 i formeln
  2. Du har fått fel tecken på kvadraten (0-a)2

Okej, ska dirigera de misstagen

Yngve 40597 – Livehjälpare
Postad: 26 nov 2023 19:22 Redigerad: 26 nov 2023 19:24
Scientia skrev:
Tyvärr så är det här hela frågan. Jag hittade på vart punkterna fanns på x och y axeln i min uträkning. Tänkte att eftersom de enbart vill veta avståndet från start till där stenen träffar marken i x led så spelar det ingen roll vilka koordinater det är så länge det blir proportionellt. Utgick därför ifrån att starten av kastet är på x = 0 och därmed gjorde jag punkten till: 0,78

Ja, det är helt OK att göra så.

Jag förstod av din beskrivning att origo måste ligga där, men det underlättar för läsaren om du lägger in koordinatsystemet i bilden.

Scientia 11
Postad: 26 nov 2023 19:28

78 = k(9,6)^2 + 82,7 

78 = 92,16k + 82,7

Minus 82,7 på båda sidor

-4,7 = 92,16k

Dela med 92,16 på båda sidor

-0,05099826 = k

 

y = -0,05099826(x-92,16)^2+ 82,7 

Använde kvadreringsregeln  

y = -0,05099826(x^2 -19,2x + 92,16) + 82,7

y = -0,05099826x^2 + 0,979x - 4,699 + 82,7

y = -0,05099826x^2 + 0,979x + 87,399

Jag söker efter nollpunkten eftersom jag ska hitta avståndet från där stenen kastades till nollpunkten (där stenen landade) 

0 = -0,05099826x^2 + 0,979x + 87,399

Delar båda sidor med: -0,05099826 för att få ett x^2

0 = x^2 -19,2x + 174,86

Använder pq-formeln:

X = 9,6 +- roten ur: -86,88 

Jag vet inte vilket fel jag har gjort. Facit säger: 50 meter, men min uträkning resulterar i en negativ diskriminant vilket skulle innebära          ”imaginary numbers” och det funkar inte. 

Yngve 40597 – Livehjälpare
Postad: 26 nov 2023 19:33
Scientia skrev:

[...]

Delar båda sidor med: -0,05099826 för att få ett x^2

0 = x^2 -19,2x + 174,86

[...]

Kontrollera din uträkning (det fetmarkerade ovan)

Scientia 11
Postad: 26 nov 2023 19:51

0 = x^2 - 19,2x - 1713 

pq-formeln:

 

x = - -19,2/2 +- roten ur: (19,2/2)2 - - 1713 

x = 19,2/2 +- roten ur: 92,16 + 1713

x = 9,6 +- roten ur: 1805,16

x = 9,6 +- 42,487

x1 = 9,6 + 42,487 =  52,087 (det här är den viktiga punkten) 

x2 = 9,6 - 42,487 = -32,487

Svar: 52,087 m

Yngve 40597 – Livehjälpare
Postad: 26 nov 2023 23:03 Redigerad: 26 nov 2023 23:04
Scientia skrev:

[...]

Använde kvadreringsregeln  

y = -0,05099826(x^2 -19,2x + 92,16) + 82,7

y = -0,05099826x^2 + 0,979x - 4,699 + 82,7

y = -0,05099826x^2 + 0,979x + 87,399

[...]

Det är även felräknat här (fetmarkerat).

Förslag: Gör istället på detta sätt för att minska antalet uträkningar:

Du har sambandet y = -0,051•(x-9,6)2+82,7 och du vill lösa ekvationen y = 0.

Det ger dig

-0,051•(x-9,6)2+82,7 = 0 

Dividera båda sidor med -0,051:

(x-9,6)2-1622 = 0

Utveckla kvadraten:

x2-19,2x+92,16-1622 = 0

x2-19,2x-1529 = 0

O.s.v.

Louis 3647
Postad: 28 nov 2023 18:09

Om origo i stället väljs i maximipunkten:

y = kx2
-4,7 = k*9,62
k ≈ -0,051

-(4,7+78,0) =- 0,051x2
x 40,27
40,27 + 9,6 50

Svara
Close