5 svar
137 visningar
MrAqua@gmail.com 11 – Fd. Medlem
Postad: 25 feb 2020 08:26

Beräkning av hastighet för intervall med säkra hastigheter.

"En besättningsfri raket håller på att tillverkas och du ska beräkna om inställningarna på raketen är tillräckligt bra för att klara av uppskjutningen, som pågår under fem kritiska sekunder. Höjden över marken kan beskrivas med funktionen h(t)=3,92t​−1 meter efter t sekunder, under de fem första sekunderna av uppskjutningen, enligt de inställningar som råder i dag.

Efter de fem sekunderna fortsätter raketen i samma hastighet som den då kommit upp till. Raketens hastighet v(t) bör vara inom intervallet 300<v(t)<400 km/h då uppskjutningen är avklarad, alltså efter de fem första sekunderna, för att undvika att den blir överhettad och exploderar. Vilket råd ger du dina chefer efter din beräkning?"

 

Min beräkning:

h(t)=e0,5ln(3,9)t => h'(t)=0,5ln(3,9)e0,5ln(3,9)t = v(t)Sedan placerar jag in tiden för intervallen t=5sh'(t)=0,5ln(3,9)e0,5ln(3,9)*520,44

Jag får att 20,44m/s*3,6 = 73,58km/h vilket är långt under intervallen. Enligt facit så ska 20,44m/s bli 340km/h hur?

Smutstvätt 25191 – Moderator
Postad: 25 feb 2020 08:39

Vilken funktion har uppgiften gett? Först skriver du h(t)=3,92t-1h(t)=3,92t-1, sedan h(t)=e0,5ln(3,9)th(t)=e^{0,5\ln(3,9)t}

MrAqua@gmail.com 11 – Fd. Medlem
Postad: 25 feb 2020 10:05
Smutstvätt skrev:

Vilken funktion har uppgiften gett? Först skriver du h(t)=3,92t-1h(t)=3,92t-1, sedan h(t)=e0,5ln(3,9)th(t)=e^{0,5\ln(3,9)t}

Det står i citatet: 

"h(t)=3,92t​−1"

Jag omvandlade sedan a^t till e^ln(a)t

Yngve 40561 – Livehjälpare
Postad: 25 feb 2020 10:21 Redigerad: 25 feb 2020 10:27

Något verkar vara fel.

Om h(t)=3,92t-1h(t)=3,92t-1 så är v(t)=h'(t)=3,92v(t)=h'(t)=3,92, dvs en konstant. Då är hastigheten hela tiden 3,92 m/s, dvs ingen acceleration.

Ska det egentligen stå h(t)=3,92t-1h(t)=3,92^t-1?

Men det verkar inte heller stämma för då blir hastigheten alldeles för stor efter 5 sekunder.

Kan du ladda upp en bild av uppgiften?

----------

EDIT - ska det kanske vara h(t)=3,93t-1h(t)=3,93^{t-1}?

Och att tillåten hastighet är mellan 300 och 400 m/s?

Då hänger det ihop, men hastigheten efrer 5 sekunder blir då ungefär 323 m/s.

MrAqua@gmail.com 11 – Fd. Medlem
Postad: 25 feb 2020 12:12
Yngve skrev:

Något verkar vara fel.

Om h(t)=3,92t-1h(t)=3,92t-1 så är v(t)=h'(t)=3,92v(t)=h'(t)=3,92, dvs en konstant. Då är hastigheten hela tiden 3,92 m/s, dvs ingen acceleration.

Ska det egentligen stå h(t)=3,92t-1h(t)=3,92^t-1?

Men det verkar inte heller stämma för då blir hastigheten alldeles för stor efter 5 sekunder.

Kan du ladda upp en bild av uppgiften?

----------

EDIT - ska det kanske vara h(t)=3,93t-1h(t)=3,93^{t-1}?

Och att tillåten hastighet är mellan 300 och 400 m/s?

Då hänger det ihop, men hastigheten efrer 5 sekunder blir då ungefär 323 m/s.

Jo, det är jag som skrivit fel här. Det ska vara t som exponent.

Yngve 40561 – Livehjälpare
Postad: 25 feb 2020 14:10 Redigerad: 25 feb 2020 16:15
MrAqua skrev:

Jo, det är jag som skrivit fel här. Det ska vara t som exponent.

Kan du ladda upp en bild av frågan?

Svara
Close